
BASIC! Language Reference

Originally published as De_Re_Basic!

Original Author Paul Laughton, 2011

Edited by Robert A. Rioja

robrioja@gmail.com

http://www.RvAdList.com

Document Version 2023-09-05

mailto:robrioja@gmail.com
http://www.RvAdList.com/

Page 2 of 209 Basic! Language Reference 2023-09-05

Table of Contents
BASIC! Language Reference..1

Table of Contents...2

1 Introduction...14
1.1 BASIC!...14
1.2 About the Cover Art...14
1.3 Credits...14
1.4 Documentation..14

1.4.1 To Do..14

2 Basic Syntax...15
2.1 Multiple Commands on a Line...15
2.2 Line Continuation..15

3 Android Device...16
3.1 Device...16
3.2 Device.language...17
3.3 Device.locale...17
3.4 Device.OS...17
3.5 Phone.info...17
3.6 Screen...19
3.7 Screen.rotation..19
3.8 Screen.size..19
3.9 WiFi.info..20

4 App Commands..21
4.1 App.broadcast...21
4.2 App.start..21

5 Array Commands..23
5.1 Array.average..23
5.2 Array.copy..23
5.3 Array.delete...23
5.4 Array.dims..23
5.5 Array.fill..23
5.6 Array.length...24
5.7 Array.load..24
5.8 Array.max..24
5.9 Array.min...24
5.10 Array.reverse...24
5.11 Array.search...24
5.12 Array.shuffle...25
5.13 Array.sort...25
5.14 Array.std_dev...25
5.15 Array.sum..25
5.16 Array.variance..25
5.17 Dim..25
5.18 UnDim...26

6 Audio Commands...27
6.1 Audio.isdone..27
6.2 Audio.length...27
6.3 Audio.load..27
6.4 Audio.loop..28
6.5 Audio.pause...28
6.6 Audio.play..28
6.7 Audio.position.current..28

2023-09-05 Basic! Language Reference Page 3 of 209
6.8 Audio.position.seek...28
6.9 Audio.record.start..28
6.10 Audio.record.stop..29
6.11 Audio.release...29
6.12 Audio.stop..29
6.13 Audio.volume...29

7 Background Commands and Functions...30
7.1 Background...30
7.2 Background.resume..30
7.3 Home...30
7.4 OnBackground:...30
7.5 WakeLock..30
7.6 WifiLock...31

8 Bluetooth Commands...33
8.1 Bt.close..33
8.2 Bt.connect...33
8.3 Bt.device.name..33
8.4 Bt.disconnect...34
8.5 Bt.onReadReady.resume..34
8.6 Bt.open..34
8.7 Bt.read.bytes...34
8.8 Bt.read.ready...34
8.9 Bt.reconnect..34
8.10 Bt.set.UUID...34
8.11 Bt.status...35
8.12 Bt.write..35
8.13 OnBtReadReady:..36

9 Bundle Commands...37
9.1.1 Bundle Auto-Create..37

9.2 Bundle.clear..37
9.3 Bundle.contain...38
9.4 Bundle.create..38
9.5 Bundle.get...38
9.6 Bundle.keys...38
9.7 Bundle.put...39
9.8 Bundle.remove..39
9.9 Bundle.type...39

10 Clipboard Commands...40
10.1 Clipboard.get...40
10.2 Clipboard.put...40

11 Communication: Email, Phone and Text Commands...41
11.1 Email.send...41
11.2 MyPhoneNumber...41
11.3 Phone.call..41
11.4 Phone.dial..41
11.5 Phone.rcv.init...41
11.6 Phone.rcv.next...41
11.7 Sms.send...42
11.8 Sms.rcv.init..42
11.9 Sms.rcv.next..42

12 Console Input and Interaction Commands...43
12.1 Dialog.message..43
12.2 Dialog.select..44
12.3 Input..44

Page 4 of 209 Basic! Language Reference 2023-09-05
12.4 Inkey$..45
12.5 Kb.hide..45
12.6 Kb.resume...45
12.7 Kb.show...45
12.8 Kb.showing..45
12.9 Kb.toggle...46
12.10 Key.resume...46
12.11 OnKbChange:..46
12.12 OnKeyPress:...46
12.13 Popup..46
12.14 Select..47
12.15 Text.input...47
12.16 TGet..48

13 Console Output Commands...49
13.1 Cls...49
13.2 Console.front...49
13.3 Console.line.count...49
13.4 Console.line.text..49
13.5 Console.line.touched...49
13.6 Console.save...50
13.7 Console.title...50
13.8 ConsoleTouch.resume..50
13.9 Print...50
13.10 OnConsoleTouch:..51

14 Debug Commands..52
14.1 Debug.dump.array..52
14.2 Debug.dump.bundle..52
14.3 Debug.dump.list..52
14.4 Debug.dump.scalars...52
14.5 Debug.dump.stack..52
14.6 Debug.echo.off..52
14.7 Debug.echo.on..52
14.8 Debug.off...52
14.9 Debug.on...53
14.10 Debug.print..53
14.11 Debug.show...53
14.12 Debug.show.array...53
14.13 Debug.show.bundle...53
14.14 Debug.show.list...53
14.15 Debug.show.program..54
14.16 Debug.show.scalars..54
14.17 Debug.show.stack...54
14.18 Debug.show.watch..54
14.19 Debug.watch...54
14.20 Echo.off...54
14.21 Echo.on...55

15 Files and Paths...56
15.1 Paths Explained..56
15.2 Paths in BASIC!..56
15.3 Paths Outside of BASIC!...57
15.4 Paths and Case-sensitivity..57
15.5 Mark and Mark Limit..57
15.6 Files and Resources...58

16 File Commands..59

2023-09-05 Basic! Language Reference Page 5 of 209
16.1 Dir..59
16.2 File.delete..59
16.3 File.dir..59
16.4 File.exists..59
16.5 File.mkdir...60
16.6 File.rename...60
16.7 File.root...60
16.8 File.size...60
16.9 File.type...61
16.10 GrabFile...61
16.11 GrabURL...61
16.12 Mkdir..61
16.13 Rename...61

17 File Byte I/O Commands..62
17.1 Byte.close..62
17.2 Byte.copy...62
17.3 Byte.eof...62
17.4 Byte.open..62
17.5 Byte.position.get..63
17.6 Byte.position.mark...63
17.7 Byte.position.set..63
17.8 Byte.read.buffer...63
17.9 Byte.read.byte...63
17.10 Byte.read.number..64
17.11 Byte.truncate...64
17.12 Byte.write.buffer..64
17.13 Byte.write.byte...64
17.14 Byte.write.number...65

18 File Text I/O Commands...66
18.1 Text.close..66
18.2 Text.eof..66
18.3 Text.open...66
18.4 Text.position.get..66
18.5 Text.position.mark...67
18.6 Text.position.set...67
18.7 Text.readln...67
18.8 Text.writeln..68

19 File ZIP I/O Commands..69
19.1 Zip.close..69
19.2 Zip.count..69
19.3 Zip.dir..69
19.4 Zip.open..69
19.5 Zip.read...70
19.6 Zip.write...70

20 Font Commands...71
20.1 Font.clear..71
20.2 Font.delete..71
20.3 Font.load...71

21 FTP Client Commands...72
21.1 Ftp.cd..72
21.2 Ftp.close..72
21.3 Ftp.delete..72
21.4 Ftp.dir..72
21.5 Ftp.get...72

Page 6 of 209 Basic! Language Reference 2023-09-05
21.6 Ftp.mkdir...72
21.7 Ftp.open..73
21.8 Ftp.put...73
21.9 Ftp.rename..73
21.10 Ftp.rmdir..73

22 GPS..74
22.1 GPS Control Commands...74

22.1.1 Gps.close...74
22.1.2 Gps.open...74
22.1.3 Gps.status..74

22.2 GPS Location Commands...76
22.2.1 Gps.accuracy...77
22.2.2 Gps.altitude..77
22.2.3 Gps.bearing...77
22.2.4 Gps.latitude..77
22.2.5 Gps.location...77
22.2.6 Gps.longitude...78
22.2.7 Gps.provider..78
22.2.8 Gps.satellites...78
22.2.9 Gps.speed..78
22.2.10 Gps.time...78

23 Graphics...79
23.1 Introduction..79

23.1.1 The Graphics Screen and Graphics Mode..79
23.1.2 Display Lists...79
23.1.3 Drawing Coordinates...80
23.1.4 Drawing into Bitmaps...80
23.1.5 Colors...80
23.1.6 Paints...80

23.1.6.1 Basic usage..80
23.1.6.2 Advanced usage...80

23.1.7 Style...81
23.1.7.1 FILL..81
23.1.7.2 STROKE...81
23.1.7.3 STROKE and FILL..82

23.1.8 Hardware Accelerated Graphics..82
23.2 Graphics Setup Commands..82

23.2.1 Gr.brightness..82
23.2.2 Gr.close..82
23.2.3 Gr.cls..82
23.2.4 Gr.color..83
23.2.5 Gr.front...84
23.2.6 Gr.open..84
23.2.7 Gr.orientation...84
23.2.8 Gr.render..84
23.2.9 Gr.scale..85
23.2.10 Gr.screen...85
23.2.11 Gr.set.antialias...85
23.2.12 Gr.set.stroke...86
23.2.13 Gr.statusbar...86
23.2.14 Gr.statusbar.show..86

23.3 Graphics Object Creation Commands..86
23.3.1 Gr.arc...87
23.3.2 Gr.circle..87
23.3.3 Gr.line...87

2023-09-05 Basic! Language Reference Page 7 of 209
23.3.4 Gr.oval..87
23.3.5 Gr.point..88
23.3.6 Gr.poly..88
23.3.7 Gr.rect..88
23.3.8 Gr.set.pixels...89

23.4 Graphics Groups...89
23.4.1 Gr.group...90
23.4.2 Gr.group.getDL..90
23.4.3 Gr.group.list..90
23.4.4 Gr.group.newDL...90

23.5 Graphics Hide and Show Commands...91
23.5.1 Gr.hide...91
23.5.2 Gr.show..91
23.5.3 Gr.show.toggle...91

23.6 Graphics Touch Query Commands...91
23.6.1 Gr.bounded.touch..91
23.6.2 Gr.bounded.touch2..91
23.6.3 Gr.onGrTouch.resume..92
23.6.4 Gr.touch...92
23.6.5 Gr.touch2...92
23.6.6 OnGrTouch:..92

23.7 Graphics Text Commands...92
23.7.1 Gr.get.textbounds...93
23.7.2 Gr.text.align..93
23.7.3 Gr.text.bold...93
23.7.4 Gr.text.draw..94
23.7.5 Gr.text.height..94
23.7.6 Gr.text.setfont...95
23.7.7 Gr.text.size...95
23.7.8 Gr.text.skew...96
23.7.9 Gr.text.strike...96
23.7.10 Gr.text.typeface..96
23.7.11 Gr.text.underline...96
23.7.12 Gr.text.width...97

23.8 Graphics Bitmap Commands..97
23.8.1 Gr.bitmap.create..98
23.8.2 Gr.bitmap.crop...98
23.8.3 Gr.bitmap.delete...98
23.8.4 Gr.bitmap.draw...98
23.8.5 Gr.bitmap.drawinto.end..99
23.8.6 Gr.bitmap.drawinto.start...99
23.8.7 Gr.bitmap.fill...99
23.8.8 Gr.bitmap.load..99
23.8.9 Gr.bitmap.save...99
23.8.10 Gr.bitmap.scale..100
23.8.11 Gr.bitmap.size..100
23.8.12 Gr.get.bmpixel..100

23.9 Graphics Paint Commands...100
23.9.1 Gr.paint.copy..100
23.9.2 Gr.paint.get..101
23.9.3 Gr.paint.reset...101

23.10 Graphics Rotate Commands...101
23.10.1 Gr.rotate.end..101
23.10.2 Gr.rotate.start...101

23.11 Graphics Camera Commands...102

Page 8 of 209 Basic! Language Reference 2023-09-05
23.11.1 Gr.camera.autoshoot..102
23.11.2 Gr.camera.manualShoot..103
23.11.3 Gr.camera.select..103
23.11.4 Gr.camera.shoot...103

23.12 Graphics Miscellaneous Commands...104
23.12.1 Gr.clip...104
23.12.2 Gr.getDL...105
23.12.3 Gr.get.params..105
23.12.4 Gr.get.pixel...105
23.12.5 Gr.get.position..105
23.12.6 Gr.get.type...105
23.12.7 Gr.get.value..105
23.12.8 Gr.modify..106

23.12.8.1 General Purpose Parameters...107
23.12.9 Gr.move...107
23.12.10 Gr.newDL...107
23.12.11 Gr.save...107
23.12.12 Gr.screen.to_bitmap..108
23.12.13 Gr_collision..108

24 HTML Commands...109
24.1 Browse..109
24.2 Html.clear.cache..109
24.3 Html.clear.history...109
24.4 Html.close..109
24.5 Html.get.datalink...109
24.6 Html.go.back..110
24.7 Html.go.forward...110
24.8 Html.load.string..110
24.9 Html.load.url..110
24.10 Html.open..112
24.11 Html.orientation..112
24.12 Html.post...112
24.13 Http.post..112

25 Interrupts, Event Handlers and Errors..114
25.1 Interrupt Labels..114
25.2 OnError:...115
25.3 GetError$()..115
25.4 OnBackKey:, Back.resume..115
25.5 OnLowMemory:, LowMemory.resume...116
25.6 OnMenuKey:, MenuKey.resume..116

26 List Commands...117
26.1 List.add..117
26.2 List.add.list...117
26.3 List.add.array...117
26.4 List.clear..118
26.5 List.create..118
26.6 List.get...118
26.7 List.insert...118
26.8 List.remove..118
26.9 List.replace..118
26.10 List.search...119
26.11 List.size..119
26.12 List.toArray..119
26.13 List.type...119

2023-09-05 Basic! Language Reference Page 9 of 209
27 Math Functions...120

27.1 Abs..120
27.2 Acos...120
27.3 Asin..120
27.4 Atan...120
27.5 Atan2...120
27.6 Band..120
27.7 Bnot...120
27.8 Bor...120
27.9 Bxor...121
27.10 Cbrt..121
27.11 Ceil..121
27.12 Cos..121
27.13 Cosh..121
27.14 ExpXP...121
27.15 Floor..121
27.16 Frac...121
27.17 Hypot...121
27.18 Int..122
27.19 Log..122
27.20 Log10..122
27.21 Max..122
27.22 Min...122
27.23 Mod...122
27.24 Pi...122
27.25 Pow...122
27.26 Round..122
27.27 Sgn..123
27.28 Shift...123
27.29 Sin...124
27.30 Sinh...124
27.31 Sqr...124
27.32 Tan...124
27.33 ToDegrees...124
27.34 ToRadians...124

28 Miscellaneous Commands...125
28.1 Headset...125
28.2 Notify...125
28.3 Pause..126
28.4 Swap...126
28.5 Tone...126
28.6 Vibrate...126
28.7 Volume Keys...126

28.7.1 VolKeys.off...127
28.7.2 VolKeys.on...127

29 Program Control, Execution and Status Commands..128
29.1 Include...128
29.2 Program.info..128
29.3 Run..129
29.4 Version$..130

30 Program Flow Statements..131
30.1 Do / Until..131

30.1.1 D_U.continue...131
30.1.2 D_U.break..131

30.2 For - To - Step / Next...131

Page 10 of 209 Basic! Language Reference 2023-09-05
30.2.1 F_N.continue..132
30.2.2 F_N.break..132

30.3 If / Then / Else / Elseif / Endif..132
30.4 If / Then / Else...133
30.5 Switch Commands..133

30.5.1 Nesting Switch Operations..134
30.5.2 Sw.begin..134
30.5.3 Sw.case..134
30.5.4 Sw.break..135
30.5.5 Sw.default..135
30.5.6 Sw.end...135

30.6 While / Repeat...135
30.6.1 W_R.continue..135
30.6.2 W_R.break...136

30.7 Labels, GoTo, GoSub, and Return..136
30.7.1 Label..136
30.7.2 GoTo..137
30.7.3 GoSub / Return..137

30.8 End..138
30.9 Exit..138

31 Queues...139

32 Random Number Generator...140
32.1 Randomize..140
32.2 Rnd..140

33 Read Commands..141
33.1 Read.data..141
33.2 Read.from..141
33.3 Read.next..141

34 Ringer Commands..142
34.1 Ringer.get.mode..142
34.2 Ringer.get.volume...142
34.3 Ringer.set.mode..142
34.4 Ringer.set.volume...142

35 Sensors..143
35.1 Sensors.close..143
35.2 Sensors.list..143
35.3 Sensors.open..144
35.4 Sensors.read...144

36 Socket (TCP/IP) Commands..145
36.1 Client Socket (TCP/IP) Commands...145

36.1.1 Socket.client.close...145
36.1.2 Socket.client.connect...145
36.1.3 Socket.client.read.file...146
36.1.4 Socket.client.read.line..146
36.1.5 Socket.client.read.ready..146
36.1.6 Socket.client.server.ip..146
36.1.7 Socket.client.status..146
36.1.8 Socket.client.write.bytes..146
36.1.9 Socket.client.write.file..146
36.1.10 Socket.client.write.line...147

36.2 Server Socket (TCP/IP) Commands...147
36.2.1 Socket.myIP...147
36.2.2 Socket.myIP...147
36.2.3 Socket.server.client.ip..147

2023-09-05 Basic! Language Reference Page 11 of 209
36.2.4 Socket.server.close..147
36.2.5 Socket.server.connect..147
36.2.6 Socket.server.create..148
36.2.7 Socket.server.disconnect...148
36.2.8 Socket.server.read.file...148
36.2.9 Socket.server.read.line..148
36.2.10 Socket.server.read.ready...148
36.2.11 Socket.server.status...148
36.2.12 Socket.server.write.bytes...149
36.2.13 Socket.server.write.file...149
36.2.14 Socket.server.write.line..149

37 SoundPool Commands...150
37.1 SoundPool.load...150
37.2 SoundPool.open..150
37.3 SoundPool.pause..150
37.4 SoundPool.play...150
37.5 SoundPool.release..151
37.6 SoundPool.resume..151
37.7 SoundPool.setPriority..151
37.8 SoundPool.setRate...151
37.9 SoundPool.setVolume...151
37.10 SoundPool.stop...151
37.11 SoundPool.unload...151

38 Speech Conversion..152
38.1 Text To Speech..152

38.1.1 TTS.init...152
38.1.2 TTS.speak..152
38.1.3 TTS.speak.toFile..152
38.1.4 TTS.stop..152

38.2 Speech To Text (Voice Recognition)..153
38.2.1 STT.listen...153
38.2.2 STT.results...153

38.2.2.1 Console Mode..153
38.2.2.2 Graphics Mode...153
38.2.2.3 HTML Mode..154

39 Sql Commands...155
39.1 Sql.close..155
39.2 Sql.delete..155
39.3 Sql.drop_table...155
39.4 Sql.exec...155
39.5 Sql.insert...155
39.6 Sql.new_table..156
39.7 Sql.next...156
39.8 Sql.open..157
39.9 Sql.query...157
39.10 Sql.query.length...158
39.11 Sql.query.position..158
39.12 Sql.raw_query...158
39.13 Sql.update...158

40 Stack Commands...159
40.1 Stack.clear...159
40.2 Stack.create..159
40.3 Stack.isEmpty..159
40.4 Stack.peek...159

Page 12 of 209 Basic! Language Reference 2023-09-05
40.5 Stack.pop..159
40.6 Stack.push...159
40.7 Stack.type..160

41 String Functions That Return a String..161
41.1 Bin$...161
41.2 Chr$...161
41.3 Decode$..161
41.4 Encode$..162
41.5 Format$...164
41.6 Format_using$..165
41.7 Hex$..165
41.8 Int$..165
41.9 Left$..165
41.10 Lower$...165
41.11 Ltrim$...165
41.12 Mid$...166
41.13 Oct$...166
41.14 Replace$...166
41.15 Right$..166
41.16 Rtrim$..166
41.17 Str$..167
41.18 Trim$...167
41.19 Upper$...167
41.20 Using$...167

41.20.1 Locale expression..167
41.20.2 Format expression...168

41.20.2.1 Format Specifiers...168
41.20.2.2 Optional Modifiers...169
41.20.2.3 Index...169
41.20.2.4 Flags...170
41.20.2.5 Width..170
41.20.2.6 Precision...170

41.20.3 Integer values..170
41.21 Word$..171

42 String Functions That Return a Number...172
42.1 Ascii...172
42.2 Bin...172
42.3 Ends_with..172
42.4 Hex..172
42.5 Is_in...172
42.6 Is_number...172
42.7 Len..173
42.8 Oct...173
42.9 Starts_with...173
42.10 Ucode..173
42.11 Val..173

43 String Commands...174
43.1 Decrypt..174
43.2 Encrypt..174
43.3 Join / Join.all..174
43.4 Split / Split.all...175

44 Superuser Commands..176
44.1 Su.close...176
44.2 Su.open...176

2023-09-05 Basic! Language Reference Page 13 of 209
44.3 Su.read.line...176
44.4 Su.read.ready..176
44.5 Su.write...176

45 System Commands..177
45.1 System.close...177
45.2 System.open...177
45.3 System.read.line...177
45.4 System.read.ready <nvar>..177
45.5 System.write..178

46 Time Functions...179
46.1 Clock...179
46.2 Time...179

47 Time Commands..180
47.1 Time...180
47.2 TimeZone.get..180
47.3 TimeZone.list...180
47.4 TimeZone.set...180

48 Timer Interrupt and Commands..182
48.1 OnTimer:...182
48.2 Timer.clear...182
48.3 Timer.resume...182
48.4 Timer.set..182

49 User-Defined Functions..183
49.1 Variable Scope..183
49.2 Data Structures in User-Defined Functions...183
49.3 Commands..183

49.3.1 Fn.def...183
49.3.2 Fn.end..184
49.3.3 Fn.rtn..184
49.3.4 Call...185

50 Appendix - Supported media formats...186
50.1 Audio support..186

51 Appendix - urlencoded..188

52 Appendix – Formatter...189
52.1 Formatter...189
52.2 Format String Syntax..190
52.3 Conversions..191

52.3.1 Date/Time Conversions...192
52.3.2 Flags..194
52.3.3 Width..195
52.3.4 Precision..195
52.3.5 Argument Index..195

52.4 Details...195
52.4.1 General..196
52.4.2 Character...197
52.4.3 Numeric..197
52.4.4 Date/Time..206
52.4.5 Percent...208
52.4.6 Line Separator...208
52.4.7 Argument Index..208

Page 14 of 209 Basic! Language Reference 2023-09-05
1 Introduction

1.1 BASIC!
BASIC! is an Android interpreter for the Basic language. It is also known as Basic!, rfo-basic, and rfo-
basic!.

1.2 About the Cover Art
Thanks to BASIC! collaborator Nicolas Mougin. The images are screenshots from real BASIC!
programs available from the Google Play™ store, or from the excellent collection of shared BASIC!
programs available at the BASIC! forum.

1.3 Credits
Thanks to Paul Laughton, the original creator of BASIC! and its original documentation. The first
edition was published in 2011. Mr. Laughton placed this document in the Public Domain in 2016.

Thanks also to Mike Leavitt of Lansdowne, VA, USA, for his many contributions and long-time support.

1.4 Documentation
This document, Basic! Language Reference, was developed from the original De_Re_BASIC!
document. It is a companion to the Basic! User Manual, which was also developed from the original
De_Re_BASIC! document.

"De Re" is Latin for "of the thing" or "about". Therefore, “De Re Basic!” means “About Basic!”.

The Basic! User Manual and the Basic! Language Reference were edited, and are maintained, by
Robert A. Rioja.

1.4.1 To Do

Check links and add appendices as needed.

2023-09-05 Basic! Language Reference Page 15 of 209
2 Basic Syntax

2.1 Multiple Commands on a Line
More than one BASIC! source code statement may be written on one physical line. Separate
commands with a colon character ":". For example, the following line uses three separate commands
to initialize some variables:

name$="BASIC!" : ver=1.86 : array.load reviews$[], "Great!", "Wow!"

Note that two commands, Sensors.open and SQL.update, use the colon as a sub-parameter
separator. If you use multiple-command lines, be careful when using these two commands.

2.2 Line Continuation
A BASIC! source code statement may be written on more than one physical line using the line
continuation character "~". If "~" is the last thing on a line, except for optional spaces, tabs, or a '%'
comment, the line will be merged with the next line. This behavior is slightly different in the Array.load
and List.add commands; see the descriptions of those commands for details.

Note: this operation is implemented by a preprocessor that merges the source code lines with
continuation characters before the source code is executed. If you have a syntax error in the merged
line, it will show as one line in the error message, but it will still be multiple lines in the editor. Only the
first physical line will be highlighted, regardless of which line the error is in.

For example, the code line:

s$ = "The quick brown fox " + verb$ + " over " + count$ + " lazy dogs"

could be written as:

s$ = "The quick brown fox " + ~
verb$ + ~ % what the fox did
" over " + ~
count$ + ~ % how many lazy dogs
" lazy dogs"

Page 16 of 209 Basic! Language Reference 2023-09-05
3 Android Device
You can get information about your Android device with the Device command:

 The Device Brand, Device Model, Device Type, and OS

 The Language and Locale

 The PhoneType, PhoneNumber, and DeviceID

 The SN, MCC/MNC, and Network Provider stored on the SIM, if there is one.

The Device command has two forms that differ only in the type of the parameter, which determines the
format of the returned data. Both forms return the same information, as shown in this table:

Key Values Meaning Example
(from emulator)

Brand Any string
Brand name assigned by device
manufacturer

generic

Model Any string
Model identifier assigned by device
manufacturer

sdk

Device Any string
Device identifier assigned by device
manufacturer

generic

Product Any string
Product identifier assigned by device
manufacturer

sdk

OS OS Version
Android operating system version
number

4.1.2

Language Language name Default language of this device English

Locale Locale code
Default locale code, typically language
and country

en_US

PhoneType
GSM, CDMA,
SIP, or None

Type of phone radio in this device GSM

PhoneNumber String of digits
Phone number registered to this device,
if any

15555215554

DeviceID String of digits The unique device ID, such as the IMEI 000000000000000

SIM SN
String of digits or

Not available
Serial number of the SIM card,
if one is present and it is accessible

89014103211118510
720

SIM MCC/MNC
String of digits or

Not available
The "numeric name" of the provider of
the SIM, if present and accessible

310260

SIM Provider
Name string or
Not available

The name of the provider of the SIM, if
present and accessible

Android

The last six items access your device’s telephony system and SIM card. If your device has no
telephone, or BASIC! does not have permission to access them, the fields are set to neutral values:
"None", "Not available", or a string of "0" characters.

In addition, there are convenience commands to retrieve only the Locale or the Language.

Information returned by Device is static. To get dynamic information, use the Phone.Info command.

3.1 Device
Syntax: Device <svar>

or

Syntax: Device <nexp>|<nvar>

2023-09-05 Basic! Language Reference Page 17 of 209
The first form of this command returns information about your Android device in the string variable
<svar>. Each item has this form:

key = value

The names key and value refer to the first two columns of the table in the Device overview. The items
are placed in a single string, separated by newline characters. Formatted this way, if you Print the
string it is displayed with one item on each line. You can separate the individual items with Split:

DEVICE info$ % all info in one string
SPLIT info$[], info$, "\\n" % each element is one item, "<k> = <v>"
SPLIT lang_line$[], info$[6], " = " % split the Language item, two-element
array
lang$ = lang_line$[2] % lang$ is language name, like "English"

The second form of this command returns information about your Android device in a Bundle pointed at
by <nexp>|<nvar>. If you provide a variable that is not a valid Bundle pointer, the command creates a
new Bundle and returns the Bundle pointer in your variable. Otherwise it writes into the Bundle your
variable or expression points to.

The Bundle keys are shown in the first column of the table in the Device overview.

DEVICE info % all info in a Bundle
BUNDLE.GET info, "Language", lang$ % lang$ is the language name, like "English"

3.2 Device.language
Syntax: Device.language <svar>

Returns the default language of the device as a human-readable string value in string variable <svar>.

This convenience shortcut returns the same value as the "Language" key of the Bundle returned by the
numeric form of the Device command.

3.3 Device.locale
Syntax: Device.locale <svar>

Returns the default locale code of the device in standard Locale format, typically including the language
and country codes.

This convenience shortcut returns the same value as the "Locale" key of the Bundle returned by the
numeric form of the Device command.

3.4 Device.OS
Syntax: Device.OS <svar>

Returns the Android version string without needing the READ_PHONE_STATE permission.

This is a string, and it needs to be converted to a number if needed. Note that the string might be
something like “4.0.3”, and may fail the Is_number or Val functions.

3.5 Phone.info
Syntax: Phone.info <nexp>|<nvar>

Returns information about the telephony radio in your Android device, if it has one. The information is
placed in a Bundle. If you provide a variable that is not a valid Bundle pointer, the command creates a
new Bundle and returns the Bundle pointer in your variable. Otherwise it writes into the Bundle your
variable or expression points to.

Page 18 of 209 Basic! Language Reference 2023-09-05
The Bundle keys and possible values are in the table below. Each entry’s type is either N (Numeric) or
S (String).

Key Typ
e

Values Meaning Example

PhoneType S GSM, CDMA, SIP, or None
Type of phone radio in this
device

GSM

NetworkType S

GPRS, EDGE, UMTS, CDMA,
EVDOrev0, EVDOrevA,
1xRTT, HSDPA, HSUPA,

HSPA, iDen, EDVOrevB, LTE,
EHRPD, HSPAP+, or Unknown

Network type of the current
data connection

LTE

The PhoneType is the same as that returned by the Device command. It is static.

If the PhoneType is GSM and the phone is registered to a network, the Phone.info command also
returns the following items in the Bundle:

Key Type Values Meaning Example

CID N
A positive number

or -1 if CID is unknown
GSM Cell ID 342298497

LAC N
A positive number

or -1 if LAC is unknown
GSM Location Area Code 11090

MCC/MNC S String of 5 or 6 decimal digits
The "numeric name" of the
registered network operator

310260

Operator N A name string
The name of the operator of
the registered network

T-Mobile

The "numeric name" is made up of the Mobile Country Code (MCC) and Mobile Network Code (MNC).

If the PhoneType is CDMA and the phone is registered to a network, the Phone.info command also
returns the following items in the Bundle:

Key Type Values Meaning

BaseID N
A positive number

or -1 if BaseID is unknown
CDMA base station identification number

NetworkID N
A positive number

or -1 if NetworkID is unknown
CDMA network identification number

SystemID N
A positive number

or -1 if SystemID is unknown
CDMA system identification number

If your program has executed Phone.rcv.init, then Phone.info may be able to report the strength of
the signal connecting your phone to the cell tower. If the signal strength is available, Phone.info will try
to report it in one or two of the following bundle keys (the first three are mutually exclusive):

Key Type Values Meaning

SignalLevel N A positive number 0 - 4
General measure of signal quality as shown in
status bar. Higher is better.

GsmSignal N
A positive number, 0 - 31

or 99 if unknown
"SignalLevel" unavailable, phone type is GSM,
get GSM level instead.

CdmaDbm N
A negative number, typically
-90 (strong) to -105 (weak)

"SignalLevel" unavailable, phone type is
CDMA, get raw power level in dBm instead.

SignalASU N 0 - 31, 99 (most)
0 - 97, 99 (LTE)

"Arbitrary Strength Units",
range depends on network type.

This information is not available on some Android devices, depending on the device manufacturer and

2023-09-05 Basic! Language Reference Page 19 of 209
your wireless carrier.

3.6 Screen
Syntax: Screen rotation, size[], realsize[], density

Returns information about your screen.
 Provide numeric variables to get the rotation and density of the screen.

 Provide numeric array variables to get the "application size" and "real size" of the screen.
A size is returned as two values, width first and height second, in a two-element array. If the array
exists, it is overwritten. Otherwise a new array is created.

All parameters are optional. Use commas to indicate omitted parameters (see Optional Parameters).

rotation: The current orientation of your screen relative to the "natural" orientation of your device. The
natural orientation may be portrait or landscape, as defined by the manufacturer. The return value is a
number from 0 to 3. Multiply by 90 to get the rotation in degrees clockwise.

size[]: The size of the screen in pixels available for applications. This excludes system decorations.
The width and height values reflect the current screen orientation.

realsize[]: The current real size of the screen in pixels, including system decorations. NOTE: this value
is available only on devices running Android version 4.2 or later. On other devices, the values will be
the same as in the size[] array parameter.

density: A standardized Android density value in dots per inch (dpi), usually 120, 160, or 240 dpi. This
is not necessarily the real physical density of the screen. This value never changes.

3.7 Screen.rotation
Syntax: Screen.rotation <nvar>

Returns a number in the <nvar> parameter representing the current orientation of your screen relative
to the "natural" orientation of your device. The natural orientation may be portrait or landscape, as
defined by the manufacturer. The return value is a number from 0 to 3. Multiply by 90 to get the
rotation in degrees clockwise.

3.8 Screen.size
Syntax: Screen.size size[], realsize[], density

Returns information about the size and density of your screen.
 You may provide numeric array variables to get the "application size" and "real size" of the screen.

A size is returned as two values, width first and height second, in a two-element array. If the array
exists, it is overwritten. Otherwise a new array is created.

 Provide a simple numeric variable to get the density of the screen.

All parameters are optional. Use commas to indicate omitted parameters (see Optional Parameters).

size[]: The size of the screen in pixels available for applications. This excludes system decorations.
The width and height values reflect the current screen orientation.

realsize[]: The current real size of the screen in pixels, including system decorations. NOTE: this value
is available only on devices running Android version 4.2 or later. On other devices, the values will be
the same as in the size[] array parameter.

density: A standardized Android density value in dots per inch (dpi), usually 120, 160, or 240 dpi. This

Page 20 of 209 Basic! Language Reference 2023-09-05
is not necessarily the real physical density of the screen. This value never changes.

If your program is running in Graphics mode, "SCREEN.SIZE xy[], , dens" returns the same values as
"GR.SCREEN x, y, dens". Unlike Gr.screen, Screen.size also works in Console and HTML modes.

3.9 WiFi.info
Syntax: WiFi.info {{<SSID_svar>}{, <BSSID_svar>}{, <MAC_svar>}{, <IP_var>}{, <speed_nvar>}}

Gets information about the current Wi-Fi connection and places it in the return variables.

All of the parameters are optional; use commas to indicate omitted parameters (see Optional
Parameters). The table shows the available data:

Variable Type Returned Data Format
SSID String SSID of current 802.11 network "name" or hex digits (see below)

BSSID String BSSID of current access point xx:xx:xx:xx:xx:xx (MAC
address)

MAC String MAC address of your WiFi xx:xx:xx:xx:xx:xx
IP Numeric or String IP address of your WiFi Number or octets (see below)

speed Numeric Current link speed in Mbps Number

Format notes:
 SSID: If the network is named, the name is returned, surrounded by double quotes. Otherwise the

returned name is a string of hex digits.

 IP: If you provide a numeric variable, your Wi-Fi IP address is returned as a single number. If you
provide a string variable, the number is converted to a standard four-octet string. For example, the
string format 10.70.13.143 is the same IP address as the number -1887287798 (hex 8f82460a).

2023-09-05 Basic! Language Reference Page 21 of 209
4 App Commands

4.1 App.broadcast
Syntax: App.broadcast <action_sexp>, <data_uri_sexp>, <package_sexp>, <component_sexp>,

<mime_type_sexp>, <categories_sexp>, <extras_bptr_nexp>, <flags_nexp>

Creates a system message and broadcasts it to other applications on your device. The message is
called an Intent. The Intent will be received by any application that has the right Intent Filter.

All of the parameters are optional; use commas to indicate omitted parameters (see Optional
Parameters). See App.start, below, for parameter definitions.

If there is no app that can receive your broadcast, the broadcast is ignored. You can detect this
condition only by calling the GetError() function. If an app is available to receive the broadcast,
GetError$() returns "No error".

4.2 App.start
Syntax: App.start <action_sexp>, <data_uri_sexp>, <package_sexp>, <component_sexp>,

<mime_type_sexp>, <categories_sexp>, <extras_bptr_nexp>, <flags_nexp>

Sends a message to the system, called an Intent, requesting a specific application or type of application
to start. If more than one app can handle the request, the system puts up a chooser for you.

If there is no app that can handle the request, the Intent is ignored. You can detect this condition only
by calling the GetError$() function. If an app is available to launch, GetError$() returns "No error".

All of the parameters are optional. Use commas to indicate omitted parameters (see Optional
Parameters). You will almost never need to use all of the parameters in one command.

The first six parameters are string expressions: action, data URI, package name, component name,
MIME type, and a list of categories separated by commas (the commas are part of the string
expression).

The last two parameters are numeric expressions. One is a pointer to a bundle that contains "extras"
that are attached to the message. The other is a single number representing one or more flag values.

For parameter values, consult the documentation of the Android system and the app you want to start.

Parameter Meaning
am

Command
Equivalent

action An Action defined by Android or by the target application -a

data URI Data or path to data; BASIC! URI-encodes this string -d

package name Name of the target application’s package (sometimes called ID) -n [Note 2]

component name Name of a component within the target application -n [Note 2]

MIME type MIME-type of the data, may be used without a data URI -t

categories Comma-separated list of Intent categories -c [Note 3]

"extras" bundle ptr Pointer to an existing bundle containing "extras" values -e [Note 4]

flags Sum of numeric values of one or more flags -f

Notes:
1. You must use string or numeric values, not Android-defined constants, for actions, types,

Page 22 of 209 Basic! Language Reference 2023-09-05
categories, and flags. For example, you can use the string "android.intent.action.MAIN", but you
can not use the Android symbol ACTION_MAIN.

2. If you specify a component name, you must also specify the package name, even though the
package name is often part of the component name. For example, these are equivalent:
SYSTEM.WRITE "am -n com.android.calculator2.Calculator"
APP.START , , "com.android.calculator2", "com.android.calculator2.Calculator"

Usually you can use this pattern:
pkg$ = "com.android.calculator2" : comp$ = pkg$ + ".Calculator"
APP.START , , pkg$, comp$

3. A categories parameter may contain several categories separated by commas, for example:
cats$ = "android.intent.category.BROWSABLE, android.intent.category.MONKEY"
cats$ = cat1$ + "," + cat2$ + "," + cat3$

4. You must create and populate the "extras" bundle before passing its pointer to an App command.
Presently only string extras and float extras are supported (the BASIC! data types).

5. When your program uses an Intent to start another app, the second app can use another Intent to
return results. BASIC! does not yet support this return path. Your program can retrieve data that
another app leaves in a file or in the clipboard, but it cannot yet retrieve data from a return Intent.

2023-09-05 Basic! Language Reference Page 23 of 209
5 Array Commands

5.1 Array.average
Syntax: Array.average <Average_nvar>, Array[{<start>,<length>}]

Finds the average of the values in a numeric array (Array[]) or array segment (Array[start,length]), and
places the result into <Average_nvar>.

5.2 Array.copy
Syntax: Array.copy SourceArray[{<start>,<length>}], DestinationArray[{{-}<start_or_extras>}]

Copies elements of an existing SourceArray[] to the DestinationArray[]. If the Destination Array exists,
some or all of the existing array is overwritten. If the Destination Array does not exist, a new array is
created. The arrays may be either numeric or string arrays but they must both be of the same type.

You may copy an entire array (SourceArray[]) or an array segment (SourceArray[<start>,<length>]).
Copying stops without error if it reaches the end of either the SourceArray or the DestinationArray.

If <start> is < 1 it is set to 1, the first element of the SourceArray. If <length> is < 0 it is set to 0.

If the Destination Array already exists, the optional <start_or_extras> parameter specifies where to start
copying into the Destination Array.

If the Destination Array does not exist, the optional <start_or_extras> parameter specifies how many
extra elements to add to the copy. If the parameter is a negative number, these elements are added to
the start of the array, otherwise they are added to end of the array.

The extra elements for a new numeric array are initialized to zero. The extra elements for a new string
array are initialized to the empty string, "".

See the Sample Program file, f26_array_copy.bas, for working examples of this command.

5.3 Array.delete
Syntax: Array.delete Array[]{, Array[]} ...

Does the same thing as UnDim Array[].

5.4 Array.dims
Syntax: Array.dims Source[]{, {Dims[]}{, NumDims}}

Provides information about the dimensions of the Source[] array parameter. The Source[] parameter
may be a numeric or string array name with nothing in the brackets ("[]"). The array must already exist.
The Source[] parameter is required, and both of the other parameters are optional.

The dimensions of the Source[] array are written to the Dims[] array, if you provide one. The Dims[]
parameter must be a numeric array name with nothing in the brackets ("[]"). If the Dims[] array exists, it
is overwritten. Otherwise a new array is created. The result is always a one-dimensional array.

The number of dimensions of the Source[] array is written to the NumDims parameter, if you provide
one. NumDims must be a numeric variable. This value is the length of the Dims[] array.

5.5 Array.fill
Syntax: Array.fill Array[{<start>,<length>}], <exp>

Page 24 of 209 Basic! Language Reference 2023-09-05
Fills an existing array or array segment with a value. The types of the array and value must match.

5.6 Array.length
Syntax: Array.length <length_nvar>, Array[{<start>,<length>}]

Places the number of elements in an entire array (Array[] or Array$[]) or an array segment
(Array[start,length] or Array$[start,length]) into <Length_nvar>.

5.7 Array.load
Syntax: Array.load Array[], <exp>, ...

Creates a new array, evaluates the list of expressions "<exp>, ...", and loads values into the new array.
Specify the array name with no index(es). The array has one dimension; its size is the same as the
number of expressions in the list. If the named array already exists, it is overwritten.

The array may be numeric (Array[]) or string (Array$[]), and the expressions must be the same type as
the array.

The list of expressions may be continued onto the next line by ending the line with the "~" character.
The "~" character may be used between <exp> parameters, where a comma would normally appear.
The "~" itself separates the parameters; the comma is optional.

The "~" character may not be used to split a parameter across multiple lines.

Examples:

Array.load Numbers[], 2, 4, 8 , n^2, 32
Array.load Hours[], 3, 4,7,0, 99, 3, 66~ % comma not required before ~
 37, 66, 43, 83,~ % comma is allowed before ~
 83, n*5, q/2 +j
Array.load Letters$[], "a", "b","c",d$,"e"

5.8 Array.max
Syntax: Array.max <Max_nvar>, Array[{<start>,<length>}]

Finds the maximum value in a numeric array (Array[]) or array segment (Array[start,length]), and places
the result into the numeric variable <max_nvar>.

5.9 Array.min
Syntax: Array.min <Min_nvar>, Array[{<start>,<length>}]

Finds the minimum value in a numeric array (Array[]) or array segment (Array[start,length]), and places
the result into the numeric variable <min_nvar>.

5.10 Array.reverse
Syntax: Array.reverse Array[{<start>,<length>}]

Reverses the order of values in a numeric or string array (Array[] or Array$[]) or array segment
(Array[start,length] or Array$[start,length]).

5.11 Array.search
Syntax: Array.search Array[{<start>,<length>}], <value_exp>, <result_nvar>{,<start_nexp>}

2023-09-05 Basic! Language Reference Page 25 of 209
Searches in the numeric or string array (Array[] or Array$[]) or array segment (Array[start,length] or
Array$[start,length]) for the specified numeric or string value, which may be an expression. If the value
is found in the array, its position will be returned in the result numeric variable <result_nvar>. If the
value is not found the result will be zero.

If the optional start expression parameter is present, the search will start at the specified element. The
default value is 1.

If only a segment of an array is used, the result will be relative to the start point.

Example:

Array.load ar[],10, 8,12, 20, 6, 7, 88, 11
Array.search ar[4, 3], 6, pos % pos = 2 instead of 5
Array.search ar[4, 3], 88, pos % pos=0, because 88 is
 % not part of the segment

5.12 Array.shuffle
Syntax: Array.shuffle Array[{<start>,<length>}]

Randomly shuffles the values of the specified array (Array[] or Array$[]) or array segment
(Array[start,length] or Array$[start,length]).

5.13 Array.sort
Syntax: Array.sort Array[{<start>,<length>}]

Sorts the values of the specified array (Array[] or Array$[]) or array segment (Array[start,length] or
Array$[start,length]) in ascending order.

5.14 Array.std_dev
Syntax: Array.std_dev <sd_nvar>, Array[{<start>,<length>}]

Finds the standard deviation of the values in a numeric array (Array[]) or array segment
(Array[start,length]), and places the result into the numeric variable <sd_nvar>.

5.15 Array.sum
Syntax: Array.sum <sum_nvar>, Array[{<start>,<length>}]

Finds the sum of the values in a numeric array (Array[]) or array segment (Array[start,length]), and then
places the result into the numeric variable <sum_nvar>.

5.16 Array.variance
Syntax: Array.variance <v_nvar>, Array[{<start>,<length>}]

Finds the variance of the values in a numeric array (Array[]) or array segment (Array[start,length]), and
places the result into the numeric variable <v_nvar>.

5.17 Dim
Syntax: Dim Array[<nexp>{, <nexp> } ...] {, Array[<nexp>{, <nexp> } ...] } ...

The Dim command tells BASIC! how many dimensions an array will have and how big those
dimensions are. BASIC! creates the array, reserving and initializing memory for the array data. All
elements of a numeric array are initialized to the value 0.0. String array elements are initialized to the
empty string, "". If you Dim an array that already exists, the existing array is destroyed and a new one

Page 26 of 209 Basic! Language Reference 2023-09-05
created.

Multiple arrays can be dimensioned with one Dim statement. String and numeric arrays can be
dimensioned in a single Dim command.

Examples:
DIM A[15]
DIM B$[2,6,8], C[3,1,7,3], D[8]

5.18 UnDim
Syntax: UnDim Array[]{, Array[] } ...

“Undimensions” an array. The array is destroyed, releasing all of the memory it used. Multiple arrays
can be destroyed with one UnDim statement. Each Array[] is specified without any index. This
command is exactly the same as Array.delete.

2023-09-05 Basic! Language Reference Page 27 of 209
6 Audio Commands
BASIC! uses the Android Media Player interface for playing music files. This interface is not the most
stable part of Android. It sometimes gets confused about what it is doing. This can lead to random
"Forced Close" events. While these events are rare, they do occur.

The file types you can play depend on your device and the version of Android it runs. For a current list
check the Android documentation, shown in 50 Appendix - Supported media formats . Here is a partial
summary:

Audio File Type Played by Android Version

AAC AMR MIDI MP3 OGG WAV WMA all

FLAC 3.1+

AAC-ELD 4.1+

MKV 5.0+

Audio files must be loaded into the Audio File Table (AFT) before they can be played. Each audio file in
the AFT has a unique index which is returned by the audio.load command.

6.1 Audio.isdone
Syntax: Audio.isdone <lvar>

If the current playing file is still playing then <lvar> will be set to zero otherwise it will be set to one.
This can be used to determine when to start playing the next file in a play list.

Audio.play f[x]
Do
 Audio.isdone isdone
 Pause 1000
Until isdone

6.2 Audio.length
Syntax: Audio.length <length_nvar>, <aft_nexp>

Returns the total length of the file in the Audio File Table pointed to by <aft_nexp>. The length in
milliseconds will be returned in <length_nvar>.

6.3 Audio.load
Syntax: Audio.load <aft_nvar>, <filename_sexp>

Loads a music file or internet stream into the Audio File Table. The AFT index is returned in <aft_nvar>.
If the file or stream can’t be loaded, the <aft_nvar> is set to 0. Your program should test the AFT index
to find out if the audio was loaded. If the AFT index is 0, you can call the GetError$() function to get
information about the error. If you use index 0 in another Audio command you will get a run-time error.

To load a music file, specify an optional path and a filename. For example:

"Blue Danube Waltz.mp3"

would access

"<pref base drive>/rfo-basic/data/Blue Danube Waltz.mp3"

and

https://developer.android.com/guide/appendix/media-formats.html

Page 28 of 209 Basic! Language Reference 2023-09-05
"../../Music/Blue Danube Waltz.mp3"

would access

"<pref base drive>/Music/Blue Danube Waltz.mp3".

To load an internet stream, specify a full URL.

6.4 Audio.loop
Syntax: Audio.loop

When the currently playing file reaches the end of file, the file will restart playing from the beginning of
the file. There must be a currently playing file when this command is executed.

6.5 Audio.pause
Syntax: Audio.pause

Pause is like stop except that the next audio.play for this file will resume the play at the point where the
play was paused.

6.6 Audio.play
Syntax: Audio.play <aft_nexp>

Selects the file from the Audio File Table pointed to by <aft_nexp> and begins to play it. There must not
be an audio file already playing when this command is executed. If there is a file playing, execute
audio.stop first.

The music stops playing when the program stops running. To simply start a music file playing and keep
it playing, keep the program running. This infinite loop will accomplish that:

Audio.load ptr, "my_music.mp3"
Audio.play ptr
Do
 Pause 5000
Until 0

6.7 Audio.position.current
Syntax: Audio.position.current <nvar>

The current position in milliseconds of the currently playing file will be returned in <nvar>.

6.8 Audio.position.seek
Syntax: Audio.position.seek <nexp>

Moves the playing position of the currently playing file to <nexp> expressed in milliseconds.

6.9 Audio.record.start
Syntax: Audio.record.start <fn_svar>

Start audio recording using the microphone as the audio source. The recording will be saved to the
specified file. The file must have the extension .3GP. Recording will continue until the
audio.record.stop command is issued.

2023-09-05 Basic! Language Reference Page 29 of 209
6.10 Audio.record.stop
Syntax: Audio.record.stop

Stops the previously started audio recording.

6.11 Audio.release
Syntax: Audio.release <aft_nexp>

Releases the resources used by the file in the Audio File Table pointed to by <aft_nexp>. The file must
not be currently playing. The specified file will no longer be able to be played.

6.12 Audio.stop
Syntax: Audio.stop

Audio.stop terminates the currently-playing music file. This command will be ignored is no file is
playing. It is best to precede each audio.play command with an audio.stop command.

6.13 Audio.volume
Syntax: Audio.volume <left_nexp>, <right_nexp>

Changes the volume of the left and right stereo channels. There must be a currently playing file when
this command is executed.

The values should range between 0.0 (lowest) to 1.0 (highest). The human ear perceives the level of
sound changes on a logarithmic scale. The ear perceives a 10db change as twice as loud. A 20db
change would be four times as loud.

A 1 db change would be about 0.89. One way to implement a volume control would be set up a volume
table with 1db level changes. The following code creates a 16 step table.

dim volume[16]
x =1
volume [1] = x
for i = 2 to 16
 x = x * 0.89
 volume [i] = x
next i

Your code can select volume values from the table for use in the audio.volume command. The loudest
volume would be volume[1].

Page 30 of 209 Basic! Language Reference 2023-09-05
7 Background Commands and Functions

7.1 Background
Syntax: Background()

This function returns true (1) if the program is running in the background. It returns false (0) if the
program is not running in the background.

A running BASIC! program continues to run when the HOME key is tapped. This is called running in
the Background. When not in the Background mode, BASIC! is in the Foreground mode. BASIC! exits
the Background mode and enters the Foreground mode when the BASIC! icon on the home screen is
tapped.

Sometimes a BASIC! programmer wants to know if the program is running in the Background. One
reason for this might be to stop music playing while in the Background mode.If you want to be able to
detect Background mode while Graphics is open, you must not call Gr.render while in the Background
mode. Doing so will cause the program to stop running until the Foreground mode is re-entered. Use
the following code line for all Gr.render commands:

If !Background() Then Gr.render

7.2 Background.resume
Syntax: Background.resume

This command resumes an interrupted program. It should be included in an interrupt handler as
described in section OnBackground:.

7.3 Home
Syntax: Home

The HOME command does exactly what tapping the HOME key would do. The Home Screen is
displayed while the BASIC! program continues to run in the background.

7.4 OnBackground:
Syntax: OnBackground:

Interrupt handler label to trap changes in the Background/Foreground state. The Background()
function can be used to determine the new state. When done, execute the Background.resume
command to resume the interrupted program.

7.5 WakeLock
Syntax: WakeLock <code_nexp>{, <flags_nexp>}

The WakeLock command modifies the system screen timeout function. The Code parameter
<code_nexp> may be one of five values. Values 1 through 4 modify the screen timeout in various
ways. Code value 5 releases the WakeLock and restores the system screen timeout function.

The following table lists the Code parameters.

Code
WakeLock

 Type
CPU Screen

Keyboard
Light

More Information

1 Partial
WakeLock

On* Off Off http://developer.android.com/
reference/android/os/
PowerManager.html#PARTIAL_WAKE_LOCK

http://developer.android.com/reference/android/os/PowerManager.html#PARTIAL_WAKE_LOCK
http://developer.android.com/reference/android/os/PowerManager.html#PARTIAL_WAKE_LOCK
http://developer.android.com/reference/android/os/PowerManager.html#PARTIAL_WAKE_LOCK

2023-09-05 Basic! Language Reference Page 31 of 209
2 Screen

Dim
On Dim Off http://developer.android.com/

reference/android/os/
PowerManager.html#SCREEN_DIM_WAKE_LOCK

3 Screen
Bright

On Bright Off http://developer.android.com/
reference/android/os/
PowerManager.html#SCREEN_BRIGHT_WAKE_LO
CK

4 Full
WakeLock

On Bright Bright http://developer.android.com/
reference/android/os/
PowerManager.html#FULL_WAKE_LOCK

5 No
WakeLock

Off Off Off

* If you hold a partial WakeLock, the CPU will continue to run, regardless of any timers
and even after the user taps the power button. In all other WakeLocks, the CPU will run,
but the user can still put the device to sleep using the power button.

You can use the optional Flags parameter <flags_nexp> to change the screen behavior, as shown in
the table below. If the WakeLock Type is Partial WakeLock (Code 1), the Flags parameter is ignored.

Value
Flag(s)

Set
Meaning More Information

1 Acquire
causes
wakeup

Turn screen on when
wakelock is acquired.

http://developer.android.com/reference/
android/os/
PowerManager.html#ACQUIRE_CAUSES_WAKEUP

2 On after
release

Reset screen timeout when
wakelock is released.

http://developer.android.com/reference/
android/os/
PowerManager.html#ON_AFTER_RELEASE

3 Both
Other Neither

Use the WakeLock only when you really need it. Acquiring a WakeLock increases power usage and
decreases battery life. The WakeLock is always released when the program stops running.

One of the common uses for WakeLock would be in a music player that needs to keep the music
playing after the system screen timeout interval. Implementing this requires that BASIC! be kept
running. One way to do this is to put BASIC! into an infinite loop:

Audio.load n,"B5b.mp3"
Audio.play n
WakeLock 1
Do
 Pause 30000
Until 0

The screen will turn off when the system screen timeout expires but the music will continue to play.

7.6 WifiLock
Syntax: WifiLock <code_nexp>

The WifiLock command allows your program to keep the WiFi connection awake when a time-out
would normally turn it off. The <code_nexp> may be one of four values. Values 1 through 3 acquire a
WifiLock, changing the way WiFi behaves when the screen turns off. Code value 4 releases the
WifiLock and restores the normal timeout behavior.

Code
WiFiLock

Type
WiFi Operation When

Screen is Off
More Information

http://developer.android.com/reference/android/os/PowerManager.html#ON_AFTER_RELEASE
http://developer.android.com/reference/android/os/PowerManager.html#ON_AFTER_RELEASE
http://developer.android.com/reference/android/os/PowerManager.html#ON_AFTER_RELEASE
http://developer.android.com/reference/android/os/PowerManager.html#ACQUIRE_CAUSES_WAKEUP
http://developer.android.com/reference/android/os/PowerManager.html#ACQUIRE_CAUSES_WAKEUP
http://developer.android.com/reference/android/os/PowerManager.html#ACQUIRE_CAUSES_WAKEUP
http://developer.android.com/reference/android/os/PowerManager.html#FULL_WAKE_LOCK
http://developer.android.com/reference/android/os/PowerManager.html#FULL_WAKE_LOCK
http://developer.android.com/reference/android/os/PowerManager.html#FULL_WAKE_LOCK
http://developer.android.com/reference/android/os/PowerManager.html#SCREEN_BRIGHT_WAKE_LOCK
http://developer.android.com/reference/android/os/PowerManager.html#SCREEN_BRIGHT_WAKE_LOCK
http://developer.android.com/reference/android/os/PowerManager.html#SCREEN_BRIGHT_WAKE_LOCK
http://developer.android.com/reference/android/os/PowerManager.html#SCREEN_DIM_WAKE_LOCK
http://developer.android.com/reference/android/os/PowerManager.html#SCREEN_DIM_WAKE_LOCK
http://developer.android.com/reference/android/os/PowerManager.html#SCREEN_DIM_WAKE_LOCK

Page 32 of 209 Basic! Language Reference 2023-09-05
1 Scan Only WiFi kept active, but only

operation is initiating scan
and reporting scan results.

http://developer.android.com/
reference/android/net/wifi/
WifiManager.html#WIFI_MODE_SCAN_ONLY

2 Full WiFi behaves normally. http://developer.android.com/
reference/android/net/wifi/
WifiManager.html#WIFI_MODE_FULL

3 Full High
Performance

WiFi operates at high
performance with minimum
packet loss and low
latency*.

http://developer.android.com/
reference/android/net/wifi/
WifiManager.html#WIFI_MODE_FULL_HIGH_
PERF

4 No WiFiLock WiFi turns off (may be
settable on some devices).

*Full Hi-Perf mode is not available on all Android devices. Devices running Android 3.0.x
or earlier, and devices without the necessary hardware, will run in Full mode instead.

Use WifiLock only when you really need it. Acquiring a WifiLock increases power usage and
decreases battery life. The WifiLock is always released when the program stops running.

http://developer.android.com/reference/android/net/wifi/WifiManager.html#WIFI_MODE_FULL_HIGH_PERF
http://developer.android.com/reference/android/net/wifi/WifiManager.html#WIFI_MODE_FULL_HIGH_PERF
http://developer.android.com/reference/android/net/wifi/WifiManager.html#WIFI_MODE_FULL_HIGH_PERF
http://developer.android.com/reference/android/net/wifi/WifiManager.html#WIFI_MODE_FULL
http://developer.android.com/reference/android/net/wifi/WifiManager.html#WIFI_MODE_FULL
http://developer.android.com/reference/android/net/wifi/WifiManager.html#WIFI_MODE_FULL
http://developer.android.com/reference/android/net/wifi/WifiManager.html#WIFI_MODE_SCAN_ONLY
http://developer.android.com/reference/android/net/wifi/WifiManager.html#WIFI_MODE_SCAN_ONLY
http://developer.android.com/reference/android/net/wifi/WifiManager.html#WIFI_MODE_SCAN_ONLY

2023-09-05 Basic! Language Reference Page 33 of 209
8 Bluetooth Commands
BASIC! implements Bluetooth in a manner which allows the transfer of data bytes between an Android
device and some other device (which may or may not be another Android device).

Before attempting to execute any BASIC! Bluetooth commands, you should use the Android "Settings"
Application to enable Bluetooth and pair with any device(s) with which you plan to communicate.

When Bluetooth is opened using the Bt.open command, the device goes into the Listen Mode. While
in this mode it waits for a device to attempt to connect.

For an active attempt to make a Bluetooth connection, you can use the Connect Mode by successfully
executing the Bt.connect command. Upon executing the Bt.connect command the person running
the program is given a list of paired Bluetooth devices and asked. When the user selects a device,
BASIC! attempts to connect to it.

You should monitor the state of the Bluetooth using the Bt.status command. This command will report
states of Listening, Connecting and Connected. Once you receive a "Connected" report, you can
proceed to read bytes and write bytes to the connected device.

You can write bytes to a connected device using the Bt.write command.

Data is read from the connected device using the Bt.read.bytes command; however, before executing
Bt.read.bytes, you need to find out if there is data to be read. You do this using the Bt.read.ready
command.

Once connected, you should continue to monitor the status (using Bt.status) to ensure that the
connected device remains connected.

When you are done with a particular connection or with Bluetooth in general, execute Bt.close.

The sample program, f35_bluetooth, is a working example of Bluetooth using two Android devices in a
"chat" type application.

8.1 Bt.close
Syntax: Bt.close

Closes any previously opened Bluetooth connection. Bluetooth will automatically be closed when the
program execution ends.

8.2 Bt.connect
Syntax: Bt.connect {0|1}

Commands BASIC! to connect to a particular device. Executing this command will cause a list of
paired devices to be displayed. When one of these devices is selected the Bt.status will become
"Connecting" until the device has connected.

The optional parameter determines if BT will seek a secure or insecure connection. If no parameter is
given or if the parameter is 1, then a secure connection will be requested. Otherwise, an insecure
connection will be requested.

8.3 Bt.device.name
Syntax: Bt.device.name <svar>

Returns the name of the connected device in the string variable. A run-time error will be generated if no
device (Status <> 3) is connected.

Page 34 of 209 Basic! Language Reference 2023-09-05
8.4 Bt.disconnect
Syntax: Bt.disconnect

Disconnects from the connected Bluetooth device and goes into the Listen status. This avoids having
to use Bt.close + Bt.open to disconnect and wait for a new connection.

8.5 Bt.onReadReady.resume
Resumes an interrupted program. See 8.13 OnBtReadReady: for more information.

8.6 Bt.open
Syntax: Bt.open {0|1}

Opens Bluetooth in Listen Mode. If you do not have Bluetooth enabled (using the Android Settings
Application) then the person running the program will be asked whether Bluetooth should be enabled.
After Bt.open is successfully executed, the code will listen for a device that wants to connect.

The optional parameter determines if BT will listen for a secure or insecure connection. If no parameter
is given or if the parameter is 1, then a secure connection request will be listened for. Otherwise, an
insecure connection will be listened for. It is not possible to listen for either a secure or insecure
connection with one Bt.open command because the Android API requires declaring a specific
secure/insecure open.

If Bt.open is used in graphics mode (after Gr.open), you will need to insert a Pause 500 statement
after the Bt.open statement.

8.7 Bt.read.bytes
Syntax: Bt.read.bytes <svar>

The next available message is placed into the specified string variable. If there is no message then the
string variable will be returned with an empty string ("").

Each message byte is placed in one character of the string; the upper byte of each character is 0. This
is similar to Byte.read.buffer, which reads binary data from a file into a buffer string.

8.8 Bt.read.ready
Syntax: Bt.read.ready <nvar>

Reports in the numeric variable the number of messages ready to be read. If the value is greater than
zero then the messages should be read until the queue is empty.

8.9 Bt.reconnect
Syntax: Bt.reconnect

This command will attempt to reconnect to a device that was previously connected (during this Run)
with Bt.connect or a prior Bt.reconnect. The command cannot be used to reconnect to a device that
was connected following a Bt.open or Bt.disconnect command (i.e. from the Listening status).

You should monitor the Bluetooth status for Connected (3) after executing Bt.reconnect.

8.10 Bt.set.UUID
Syntax: Bt.set.UUID <sexp>

A Universally Unique Identifier (UUID) is a standardized 128-bit format for a string ID used to uniquely

2023-09-05 Basic! Language Reference Page 35 of 209
identify information. The point of a UUID is that it's big enough that you can select any random 128-bit
number and it won't clash with any other number selected similarly. In this case, it's used to uniquely
identify your application's Bluetooth service. To get a UUID to use with your application, you can use
one of the many random UUID generators on the web.

Many devices have common UUIDs for their particular application. The default BASIC! UUID is the
standard Serial Port Profile (SPP) UUID: "00001101-0000-1000-8000-00805F9B34FB".

You can change the default UUID using this command.

8.11 Bt.status
Syntax: Bt.status {{<connect_var>}{, <name_svar>}{, <address_svar>}}

Gets the current Bluetooth status and places the information in the return variables. The available data
are the current connection status (in <connect_var>), and the friendly name and MAC address of your
Bluetooth hardware (in <name_svar> and <address_svar>).

All parameters are optional; use commas to indicate omitted parameters (see Optional Parameters).

If the connection status variable <connect_var> is present, it may be either a numeric variable or a
string variable. The table shows the possible return values of each type:

Numeric Value String Value Meaning
-1 Not enabled Bluetooth not enabled
0 Idle Nothing going on
1 Listening Listening for connection
2 Connecting Connecting to another device
3 Connected Connected to another device

If the device name string variable <name_svar> is present, it is set to the friendly device name. If your
device has no Bluetooth radio, the string will be empty.

If the address string variable <address_svar> is present, it is set to the MAC address of your Bluetooth
hardware, represented as a string of six hex numbers separated by colons: "00:11:22:AA:BB:CC".

8.12 Bt.write
Syntax: Bt.write {<exp> {,|;}} ...

Writes data to the Bluetooth connection.

If the comma (,) separator is used then a comma will be printed between the values of the expressions.

If the semicolon (;) separator is used then nothing will separate the values of the expressions.

If the semicolon is at the end of the line, the output will be transmitted immediately, with no newline
character(s) added.

The parameters are the same as the Print parameters. This command is essentially a Print to the
Bluetooth connection, with two differences:

 Only one byte is transmitted for each character; the upper byte is discarded. Binary data
and ASCII text are sent correctly, but Unicode characters may not be.

 A line that ends with a semicolon is sent immediately, with no newline character(s) added.

This command with no parameters sends a newline character to the Bluetooth connection.

Page 36 of 209 Basic! Language Reference 2023-09-05
8.13 OnBtReadReady:
Interrupt handler that traps the arrival of a message received on the Bluetooth channel. If a Bluetooth
message is ready (Bt.read.ready would return a non-zero value) BASIC! executes the statements after
the OnBtReadReady: label, where you can read and handle the message. When done, execute the
Bt.onReadReady.Resume command to resume the interrupted program.

2023-09-05 Basic! Language Reference Page 37 of 209
9 Bundle Commands
A Bundle is a group of values collected together into a single object. A bundle object may contain any
number of string and numeric values. There is no fixed limit on the size or number of bundles. You are
limited only by the memory of your device.

The values are set and accessed by keys. A key is a string that identifies the value. For example, a
bundle might contain a person’s first name and last name. The keys for accessing those name strings
could be "first_name" and "last_name". An age numeric value could also be placed in the Bundle using
an "age" key.

A new, empty bundle is created by using the Bundle.create command. The command returns a
pointer to the empty bundle. Because the bundle is represented by a pointer, bundles can be placed in
lists and arrays. Bundles can also be contained in other bundles. This means that the combination of
lists and bundles can be used to create arbitrarily complex data structures.

After a bundle is created, keys and values can be added to the bundle using the Bundle.put command.
Those values can be retrieved using the keys in the Bundle.get command. There are other bundle
commands to facilitate the use of bundles.

9.1.1 Bundle Auto-Create

Every bundle command except Bundle.create has a parameter, the <pointer_nexp>, which can point
to a bundle. If the expression value points to a bundle, the existing bundle is used. If it does not, and
the expression consists only of a single numeric variable, then a new, empty bundle is created, and the
variable value is set to point to the new bundle.

That may seem complex, but it isn't, really. If there is a bundle, use it. If there is not, try to create a
new one – but BASIC! can't create a new bundle if you don't give it a variable name. BASIC! uses the
variable to tell you how to find the new bundle.

BUNDLE.PUT b,"key1", 1.2
% try to put a value in the bundle pointed to by b
BUNDLE.PUT 10, key2$, value2
% try to put a value in the 10th bundle created
BUNDLE.REMOVE c + d, key$[3],
% try to remove a key/value pair from a bundle
% pointed to by c + d

In the first example, if the value of b points to a bundle, the Bundle.put puts "key1" and the value 1.2
into that bundle. If b is a new variable, its value is 0.0, so it does not point to a bundle. In that case,
the Bundle.put creates a new bundle, puts "key1" and the value 1.2 into the new bundle, and sets b to
point to the new bundle.

In the second example, if there are at least ten bundles, then the Bundle.put tries to put the key named
in the variable key2$ and the value of the variable value2 into bundle 10. If there is no bundle 10, then
the command does nothing. It can't create a new variable because you did not provide a variable to
return the bundle pointer.

In the third example, the bundle pointer is the value of the expression c + d. If there is no such bundle,
the command does nothing. To create a new bundle, the bundle pointer expression must be a single
numeric variable.

9.2 Bundle.clear
Syntax: Bundle.clear <pointer_nexp>

The bundle pointed to by <pointer_nexp> will be cleared of all tags. It will become an empty bundle. If
the bundle does not exist, a new one may be created.

Page 38 of 209 Basic! Language Reference 2023-09-05
9.3 Bundle.contain
Syntax: Bundle.contain <pointer_nexp>, <key_sexp> , <contains_nvar>

If the key specified in the key string expression is contained in the bundle's keys then the "contains"
numeric variable will be returned with a non-zero value. The value returned will be zero if the key is not
in the bundle. If the bundle does not exist, a new one may be created.

9.4 Bundle.create
Syntax: Bundle.create <pointer_nvar>

A new, empty bundle is created. The bundle pointer is returned in <pointer_nvar>.

Example:

BUNDLE.CREATE bptr

9.5 Bundle.get
Syntax: Bundle.get <pointer_nexp>, <key_sexp>, <nvar>|<svar>

Places the value specified by the key string expression into the specified numeric or string variable.
The type (string or numeric) of the destination variable must match the type stored with the key. If the
bundle does not exist or does not contain the requested key, the command generates a run-time error.

Example:

BUNDLE.GET bptr,"first_name", first_name$
BUNDLE.GET bptr,"age", age

9.6 Bundle.keys
Syntax: Bundle.keys <bundle_ptr_nexp>, <list_ptr_nexp>

Returns a list of the keys currently in the specified bundle.

The bundle pointer parameter <bundle_ptr_nexp> specifies the bundle from which to get the keys. If
the bundle does not exist, a new one may be created.

The list pointer parameter <list_ptr_next> specifies the list into which to write the keys. The previous
contents of the list are discarded. If the parameter does not specify a valid string list to reuse, and the
parameter is a string variable, a new list is created and a pointer to the list is written to the variable.

The key names in the returned list may be extracted using the various list commands.

Example:

BUNDLE.KEYS bptr, list
LIST.SIZE list, size
FOR i = 1 TO size
 LIST.GET list, i, key$
 BUNDLE.TYPE bptr, key$, type$
 IF type$ = "S"
 BUNDLE.GET bptr, key$, value$
 PRINT key$, value$
 ELSE
 BUNDLE.GET bptr, key$, value
 PRINT key$, value
 ENDIF
NEXT i

2023-09-05 Basic! Language Reference Page 39 of 209
9.7 Bundle.put
Syntax: Bundle.put <pointer_nexp>, <key_sexp>, <value_nexp>|<value_sexp>

The value expression will be placed into the specified bundle using the specified key. If the bundle
does not exist, a new one may be created.

The type of the value will be determined by the type of the value expression.

Example:

BUNDLE.PUT bptr, "first_name", "Frank"
BUNDLE.PUT bptr,"age", 44

9.8 Bundle.remove
Syntax: Bundle.remove <pointer_nexp>, <key_sexp>

Removes the key named by the string expression <key_sexp>, along with the associated value, from
the bundle pointed to by the numeric expression <pointer_nexp>. If the bundle does not contain the
key, nothing happens. If the bundle does not exist, a new one may be created.

9.9 Bundle.type
Syntax: Bundle.type <pointer_nexp>, <key_sexp>, <type_svar>

Returns the value type (string or numeric) of the specified key in the specified string variable. The
<type_svar> will contain an uppercase "N" if the type is numeric. The <type_svar> will contain an
uppercase "S" if the type is a string. If the bundle does not exist or does not contain the requested key,
the command generates a run-time error.

Example:

BUNDLE.TYPE bptr, "age", type$
PRINT type$ % will print N

Page 40 of 209 Basic! Language Reference 2023-09-05
10 Clipboard Commands

10.1 Clipboard.get
Syntax: Clipboard.get <svar>

Copies the current contents of the clipboard into <svar>

10.2 Clipboard.put
Syntax: Clipboard.put <sexp>

Places <sexp> into the clipboard.

2023-09-05 Basic! Language Reference Page 41 of 209
11 Communication: Email, Phone and Text Commands

11.1 Email.send
Syntax: Email.send <recipient_sexp>, <subject_sexp>, <body_sexp>

The email message in the Body string expression will be sent to the named recipient with the named
subject heading.

11.2 MyPhoneNumber
Syntax: MyPhoneNumber <svar>

The phone number of the Android device will be returned in the string variable. If the device is not
connected to a cellular network, the returned value will be uncertain.

11.3 Phone.call
Syntax: Phone.call <sexp>

The phone number contained in the string expression will be called. Your device must be connected to
a cellular network to make phone calls.

11.4 Phone.dial
Syntax: Phone.dial <sexp>

Open the phone dialer app. The phone number contained in the string expression will be displayed in
the dialer. Alphabetic characters in the string will be converted to digits, as if the corresponding key of a
phone pad had been touched.

11.5 Phone.rcv.init
Syntax: Phone.rcv.init

Prepare to detect the state of your phone. If you want to detect phone calls using Phone.rcv.next, or
you want Phone.info to attempt to report signal strength, you must first run this command.

Phone.rcv.init starts a background "listener" task that detects changes in the phone state. There is no
command to disable this listener, but it is stopped when your program exits.

11.6 Phone.rcv.next
Syntax: Phone.rcv.next <state_nvar>, <number_svar>

The state of the phone will be returned in the state numeric value. A phone number may be returned in
the string variable.

State = 0. The phone is idle. The phone number will be an empty string.

State = 1. The phone is ringing. The phone number will be in the string.

State = 2. The phone is off hook. If there is no phone number (an empty string) then an outgoing call is
being made. If there is a phone number then an incoming phone call is in progress.

States 1 and 2 will be continuously reported as long the phone is ringing or the phone remains off hook.

Page 42 of 209 Basic! Language Reference 2023-09-05
11.7 Sms.send
Syntax: Sms.send <number_sexp>, <message_sexp>

The SMS message in the string expression <message_sexp> will be sent to number in the string
expression <number_sexp>. This command does not provide any feedback about the sending of the
message. The device must be connected to a cellular network to send an SMS message.

11.8 Sms.rcv.init
Syntax: Sms.rcv.init

Prepare to intercept received SMS using the sms.rcv.next command.

11.9 Sms.rcv.next
Syntax: Sms.rcv.next <svar>

Read the next received SMS message from received SMS message queue in the string variable.

The returned string will contain "@" if there is no SMS message in the queue.

The sms.rcv.init command must be called before the first sms.rcv.next command is executed.

Example:

SMS.RCV.INIT
DO
DO % Loop until SMS received
 PAUSE 5000 % Sleep of 5 seconds
 SMS.RCV.NEXT m$ % Try to get a new message
UNTIL m$ <> "@" % "@" indicates no new message
PRINT m$ % Print the new message
UNTIL 0 % Loop forever

2023-09-05 Basic! Language Reference Page 43 of 209
12 Console Input and Interaction Commands
This set of commands lets you interact with your programs.

At the lowest level, you can use Inkey$ to read raw keystrokes. You control display of the virtual
keyboard with Kb.hide, Kb.show, and Kb.toggle.

With the Select command you present information in a list format that looks very much like the Output
Console. If you prefer, you can use Dialog.Select to present the same information in a new dialog
window. Either way, when your program runs, you select an item from the list by tapping a line.

The other commands in this group all pop up new windows.

Input lets you type a number or a line of text as input to your program. Dialog.message presents a
message with a set of buttons to let you tell your program what to do next.

Popup is different. It presents information in a small, temporary display. It is not interactive and
requires no management in your program. You pop it up and forget it.

The Text.input command operates on larger blocks of text, and TGet simulates terminal I/O.

12.1 Dialog.message
Syntax: Dialog.message {<title_sexp>}, {<message_sexp>}, <sel_nvar> {, <button1_sexp>{,

<button2_sexp>{, <button3_sexp>}}}

Generates a dialog box with a title, a message, and up to three buttons. When the user taps a button,
the number of the selected button is returned in <sel_nvar>. If the user taps the screen outside of the
message dialog or presses the BACK key, then the returned value is 0.

The string <title_sexp> becomes the title of the dialog box. The string <message_sexp> is displayed in
the body of the dialog, above the buttons. The strings <button1_sexp>, <button2_sexp>, and
<button3_sexp> provide the labels on the buttons.

You may have 0, 1, 2, or 3 buttons. On most devices, the buttons are numbered from right-to-left,
because Android style guides recommend the positive action on the right and the negative action on the
left. Some devices differ. On compliant devices, tapping the right-most button returns 1.

All of the parameters except the selection index variable <sel_nvar> are optional. If any parameter is
omitted, the corresponding part of the message dialog is not displayed. Use commas to indicate
omitted parameters (see Optional Parameters).

Examples:

Dialog.Message "Hey, you!", "Is this ok?", ok, "Sure thing!", "Don’t care", "No
way!"
Dialog.Message "Continue?", , go, "YES", "NO"
Dialog.Message , "Continue?", go, "YES", "NO"
Dialog.Message , , b

The first command displays a full dialog with a title, a message, and three buttons.

The second command displays a box with a title and two buttons – note that the YES button will be on
the right and the NO button on the left. The third displays the same information, but it looks a little
different because the text is displayed as the message and not as the title. Note the commas.

The fourth command displays nothing at all. The screen dims and your program waits for a tap or the
BACK key with no feedback to tell the user what to do.

Page 44 of 209 Basic! Language Reference 2023-09-05
12.2 Dialog.select
Syntax: Dialog.select <sel_nvar>, <Array$[]>|<list_nexp> {,<title_sexp>}

Generates a dialog box with a list of choices for the user. When the user taps a list item, the index of
the selected line is returned in the <sel_nvar>. If the user taps the screen outside of the selection
dialog or presses the BACK key, then the returned value is 0.

<Array$[]> is a string array that holds the list of items to be selected. The array is specified without an
index but must have been previously dimensioned or loaded via Array.load.

As an alternative to an array, a string-type list may be specified in the <list_nexp>.

The <title_sexp> is an optional string expression that will be displayed at the top of the selection dialog.
If the parameter is not present, or the expression evaluates to an empty string (""), the dialog box will
be displayed with no title.

This command also accepts optional <message_sexp> and <press_lvar> parameters like those
described in the Select command, but they should not be used. The <message_sexp> is ignored and
the <press_lvar> will always be set to 0.

12.3 Input
Syntax: Input {<prompt_sexp>}, <result_var>{, {<default_exp>}{, <canceled_nvar>}}

Generates a dialog box with an input area and an OK button. When the user taps the button, the value
in the input area is written to the variable <result_var>.

The <prompt_sexp> will become the dialog box title. If the prompt expression is empty ("") or omitted,
the dialog box will be drawn without a title area.

If the return variable <result_var> is numeric, the input must be numeric, so the only key taps that will
be accepted are 0-9, "+", "-" and ".". If <result_var> is a string variable, the input may be any string.

If a <default_exp> is given then its value will be placed into the input area of the dialog box. The
default expression type must match the <result_var> type.

The variable <canceled_nvar> controls what happens if the user cancels the dialog, either by tapping
the BACK key or by touching anywhere outside of the dialog box.

If you provide a <canceled_nvar>, its value is set to false (0) if the user taps the OK button, and true
(1) if the users cancels the dialog.

If you do not provide a <canceled_nvar>, a canceled dialog is reported as an error. Unless there is an
"OnError:" the user will see the messages:

Input dialog cancelled
Execution halted

If there is an "OnError:" label, execution will resume at the statement following the label.

The <result_var> parameter is required. All others are optional. These are all valid:

INPUT "prompt", result$, "default", isCanceled
INPUT , result$, "default"
INPUT "prompt", result$, , isCanceled
INPUT "prompt", result$
INPUT , result$

Note the use of commas as parameter placeholders (see Optional Parameters).

2023-09-05 Basic! Language Reference Page 45 of 209
12.4 Inkey$
Syntax: Inkey$ <svar>

Reports key taps for the a-z, 0-9, Space and the D-Pad keys. The key value is returned in <svar>.

The D-Pad keys are reported as "up", "down", "left", "right" and "go". If any key other than those have
been tapped, the string "key nn" will be returned. Where nn will be the Android key code for that key.

If no key has been tapped, the "@" character is returned in <svar>.

Rapid key taps are buffered in case they come faster than the BASIC! program can handle them.

12.5 Kb.hide
Syntax: Kb.hide

Hides the soft keyboard.

If the keyboard is showing, and you have an OnKbChange: interrupt label, BASIC! will jump to your
interrupt label when the keyboard closes.

The soft keyboard is always hidden when your program starts running, regardless of whether it is
showing in the Editor.

Note: BASIC! automatically hides the soft keyboard when you change screens. For example, if the
keyboard is showing over the Output Console, and you execute Gr.open to start Graphics Mode, the
keyboard is hidden. The keyboard will not be showing when you exit Graphics Mode and return to the
Console. Similarly, if you show the keyboard over your Graphics screen and you execute Gr.close to
return to the Console, the keyboard is hidden.

If you have an OnKbChange: interrupt label, automatically hiding the keyboard does not trigger a jump
to the interrupt label.

12.6 Kb.resume
Syntax: Kb.resume

Returns from a keyboard interrupt routine at OnKbChange:.

12.7 Kb.show
Syntax: Kb.show

Shows the soft keyboard.

If the keyboard is not showing, and you have an OnKbChange: interrupt label, BASIC! will jump to your
interrupt label when the keyboard opens.

When the soft keyboard is showing, its keys may be read using the Inkey$ command. The command
may not work in devices with hard or slide-out keyboards.

You cannot show the soft keyboard over the Output Console unless you first Print to the Console.

12.8 Kb.showing
Syntax: Kb.showing <lvar>

Reports the visibility of the soft keyboard. If the keyboard is showing, the <lvar> is set to 1.0 (true),
otherwise the <lvar> is set to 0.0 (false).

Page 46 of 209 Basic! Language Reference 2023-09-05
This command reports only the status of the keyboard shown by Kb.show. For example, the keyboard
attached to the Input command dialog box cannot be controlled by Kb.show or Kb.hide and its status
is not reported by Kb.showing.

12.9 Kb.toggle
Syntax: Kb.toggle

Toggles the showing or hiding of the soft keyboard. If the keyboard is being shown, it will be hidden. If
it is hidden, it will be shown.

12.10 Key.resume
Syntax: Key.resume

Returns from a keyboard interrupt routine at OnKeyPress:.

12.11 OnKbChange:
Syntax: OnKbChange:

If you show a soft keyboard with Kb.show, or close that same keyboard with Kb.hide or by tapping the
BACK key, the change takes some time. The keyboard may open or close a few hundred milliseconds
after it is requested. Kb.show and Kb.hide block until the change is complete, but your program does
not know when you tap the BACK key.

If you have an OnKbChange: interrupt label in your program, then when the keyboard changes as just
described, BASIC! interrupts your program and executes the statements after the interrupt label.

To return control to where the interrupt occurred, execute Kb.resume in your interrupt handler.

This interrupt occurs only for keyboards you show with Kb.show. Keyboards attached to other
screens, such as TGet or the Input dialog box, do not cause OnKbChange: interrupts.

If you show a soft keyboard with Kb.show, and you tap the BACK key, the keyboard closes. The
current screen (Console or Graphics screen) does not close. BASIC! does not trap the keypress with
either OnBackKey: or OnKeyPress:. You can use the OnKbChange: interrupt label to be notified that
the keyboard closed.

12.12 OnKeyPress:
Syntax: OnKeyPress:

Interrupt handler that traps a tap on any key. When done, execute the Key.resume command to
resume the interrupted program.

12.13 Popup
Syntax: Popup <message_sexp> {{, <x_nexp>}{, <y_nexp>}{, <duration_lexp>}}

Pops up a small message for a limited duration. The message is <message_sexp>.

All of the parameters except the message are optional. If omitted, their default values are 0. Use
commas to indicate omitted parameters (see Optional Parameters).

The simplest form of the Popup command, Popup "Hello!", displays the message in the center of the
screen for two seconds.

The default location for the Popup is the center of the screen. The optional <x_nexp> and <y_nexp>

2023-09-05 Basic! Language Reference Page 47 of 209
parameters give a displacement from the center. The values may be negative.

Select the duration of the Popup, either 2 seconds or 4 seconds, with the optional <duration_lexp>
"long flag". If the flag is false (the expression evaluates to 0) the message is visible for 2 seconds. If
the flag is true (non-zero) the message is visible for 4 seconds. If the flag is omitted the duration is
short.

12.14 Select
Syntax: Select <sel_nvar>,<Array$[]>|<list_nexp>{,<title_sexp>{,<message_sexp>}}

{,<press_lvar>}

The Select command generates a new screen with a list of choices for the user. When the user taps a
screen line, the index of the selected line is returned in the <sel_nvar>. If the user presses the BACK
key, then the returned value is 0.

<Array$[]> is a string array that holds the list of items to be selected. The array is specified without an
index but must have been previously dimensioned, loaded via Array.load, or created by another
command.

As an alternative to an array, a string-type list may be specified in the <list_nexp>.

The <title_sexp> is an optional string expression that is placed into the title bar at the top of the
selection screen. If the parameter is not present, the screen displays a default title. If the expression
evaluates to an empty string ("") the title is blank.

The <message_sexp> is an optional string expression that is displayed in a short Popup message. If
the message is an empty string ("") there is no Popup. If the parameter is absent, the <title_sexp>
string is used instead, but if the <title_sexp> is also missing or empty, there is no Popup.

The <press_lvar> is optional. If present, the type of user tap—long or short—is returned in
<press_lvar>. The value returned is 0 (false) if the user selected the item with a short tap. The value
returned is 1 (true) if the user selected the item with a long press.

Use commas to indicate omitted optional parameters (see Optional Parameters).

12.15 Text.input
Syntax: Text.input <svar>{, { <text_sexp>} , <title_sexp> }

This command is similar to "Input" except that it is used to input and/or edit a large quantity of text. It
opens a new window with scroll bars and full text editing capabilities. You may set the title of the new
window with the optional <title_sexp> parameter.

If the optional <text_sexp> is present then that text is loaded into the text input window for editing. If
<text_sexp> is not present then the text.input text area will be empty. If <title_sexp> is needed but
text.input text area is to be initially empty, use two commas to indicate the <sexp> specifies the title and
not the initial text.

When done editing, tap the Finish button. The edited text is returned in <svar>.

If you tap the BACK key then all text editing is discarded. <svar> returns the original <sexp> text.

The following example grabs the Sample Program file, f01_commands.bas, to string s$. It then sends
s$ to text.input for editing. The result of the edit is returned in string r$. r$ is then printed to console.

GRABFILE s$, "../source/ Sample_Programs/f01_commands.bas"
TEXT.INPUT r$,s$
PRINT r$
END

Page 48 of 209 Basic! Language Reference 2023-09-05
12.16 TGet
Syntax: TGet <result_svar>, <prompt_sexp> {, <title_sexp>}

Simulates a terminal. The current contents of the Output Console is displayed in a new window. The
last line displayed starts with the prompt string followed by the cursor. The user types in the input and
taps enter. The characters that the user typed in is returned in <result_svar>. The prompt and
response are displayed on the Output Console.

You may set the title of the text input window with the optional <title_sexp> parameter.

2023-09-05 Basic! Language Reference Page 49 of 209
13 Console Output Commands
BASIC! has three types of output screens: The Output Console, the Graphics Screen, and the HTML
Screen. This section deals with the Output Console. See the section on Graphics for information about
the Graphics Screen. See the section on HTML for information abut the HTML screen.

Information is printed to screen using the Print command. BASIC! Run-time error messages are also
displayed on this screen.

There is no random access to locations on this screen. Lines are printed one line after the other.

Although no line numbers are displayed, lines are numbered sequentially as they are printed, starting
with 1. These line numbers refer to lines of text output, not to locations on the screen.

13.1 Cls
Syntax: Cls

Clears the Output Console screen.

13.2 Console.front
Syntax: Console.front

Brings the Output Console to the front where the user can see it.

If BASIC! is running in the background with no screen visible, this command brings it to the foreground.
If you have a different application running in the foreground, it will be pushed to the background.

If BASIC! is running in the foreground, but the Graphics or HTML screen is in the foreground, this
command brings the Console to the foreground. BASIC! remains in Graphics or HTML mode.

13.3 Console.line.count
Syntax: Console.line.count <count_nvar>

Sets the return variable <count_nvar> to the number of lines written to the Console. This command
waits for any pending Console writes to complete before reporting the count.

13.4 Console.line.text
Syntax: Console.line.text <line_nexp>, <text_svar>

The text of the specified line number of the Console is copied to the <text_svar>.

13.5 Console.line.touched
Syntax: Console.line.touched <line_nvar> {, <press_lvar>}

After an OnConsoleTouch interrupt indicates the user has touched the console, this command returns
information about the touch.

The number of the line that the user touched is returned in the <line_nvar>.

If the optional <press_lvar> is present, the type of user touch–a short tap or a long press–is returned in
the <press_lvar>. Its value will be 0 (false) if the touch was a short tap. Its value will be 1 (true) if the
touch was a long press.

Page 50 of 209 Basic! Language Reference 2023-09-05
13.6 Console.save
Syntax: Console.save <filename_sexp>

The current contents of the Console is saved to the text file specified by the filename string expression.

13.7 Console.title
Syntax: Console.title {<title_sexp>}

Changes the title of the console window. If the <title_sexp> parameter is omitted, the title is changed to
the default title, "BASIC! Program Output".

13.8 ConsoleTouch.resume
Syntax: ConsoleTouch.resume

Returns from an iterrupt routine at OnConsoleTouch:

13.9 Print

Syntax: Print {<exp> {,|;}} ... or ? {<exp> {,|;}} ...

Evaluates the expression(s) <exp> and prints the result(s) to the Output Console. You can use a
question mark (?) in place of the command keyword Print.

If the comma (,) separator follows an expression then a comma and a space will be printed after the
value of the expression.

If the semicolon (;) separator is used then nothing will separate the values of the expressions.

If the semicolon is at the end of the line, the output will not be printed until a Print command without a
semicolon at the end is executed.

Print with no parameters prints a newline.

Examples:

PRINT "New", "Message" % Prints: New, Message
PRINT "New";" Message" % Prints: New Message
PRINT "New" + " Message" % Prints: New Message

? 100-1; " Luftballons" % Prints: 99.0 Luftballons
? FORMAT$("##", 99); " Luftballons" % Prints: 99 Luftballons

PRINT "A";"B";"C"; % Prints: nothing
PRINT "D";"E";"F" % Prints: ABCDEF

Print with User-Defined Functions:

Print can operate on either strings or numbers. Sometimes it has to try both ways before it knows what
to do. First it evaluates an expression as a number. If that fails, it will evaluate the same expression as
a string.

If this happens, and the expression includes a function, the function will be called twice. If the function
has side-effects, such as printing to the console, writing to a file, or changing a global parameter, the
side-effect action will also happen twice.

Be careful not to call a function, especially a user-defined function, as part of a Print command.
Instead, assign the return value of the function to a variable, and then Print the variable. An
assignment statement always knows what type of expression to evaluate, so it never evaluates twice.

2023-09-05 Basic! Language Reference Page 51 of 209
! Do this:
y = MyFunction(x)
Print y
! NOT this:
Print MyFunction(x)

13.10 OnConsoleTouch:
Syntax: OnConsoleTouch:

Interrupt handler that traps a tap on a line printed on the Output Console. You must touch a line written
by a PRINT command, although it may be blank. BASIC! Ignores any touch in the empty area of the
screen below the printed lines. After touching a Console line, you may use the Console.Line.Touched
command to determine what line of text was touched. When done, execute the
ConsoleTouch.resume command to resume the interrupted program.

This handler allows the user to interrupt an executing BASIC! program in Console mode (not in
Graphics mode). A common reason for such an interrupt would be to have the program request input
via an INPUT statement.

To detect screen touches while in graphics mode, use OnGrTouch:.

Page 52 of 209 Basic! Language Reference 2023-09-05
14 Debug Commands
The debug commands help you debug your program. The Debug.on command controls execution of
all the debug commands. The debug commands are ignored unless the Debug.on command has been
previously executed. This means that you can leave all your debug commands in your program and be
assured that they will not execute unless you turn debugging on with Debug.on.

14.1 Debug.dump.array
Syntax: Debug.dump.array Array[]

Dumps the contents of the specified array. If the array is multidimensional the entire array will be
dumped in a linear fashion.

14.2 Debug.dump.bundle
Syntax: Debug.dump.bundle <bundlePtr_nexp>

Dumps the Bundle pointed to by the Bundle Pointer numeric expression.

14.3 Debug.dump.list
Syntax: Debug.dump.list <listPtr_nexp>

Dumps the List pointed to by the List Pointer numeric expression.

14.4 Debug.dump.scalars
Syntax: Debug.dump.scalars

Prints a list of all the Scalar variable names and values. Scalar variables are the variable names that
are not Arrays or Functions. Among other things, this command will help expose misspelled variable
names.

14.5 Debug.dump.stack
Syntax: Debug.dump.stack <stackPtr_nexp>

Dumps the Stack pointed to by the Stack Pointer numeric expression.

14.6 Debug.echo.off
Syntax: Debug.echo.off

Turns off the Echo mode. Same as Echo.off.

14.7 Debug.echo.on
Syntax: Debug.echo.on

Turns on Echo mode. Same as Echo.off. Each line of the running BASIC! program is printed before it
is executed. This can be of great help in debugging. The last few lines executed are usually the cause
of program problems. The Echo mode is turned off by either the Debug.echo.off or the Debug.off
commands.

14.8 Debug.off
Syntax: Debug.off

Turns off debug mode. All debug commands (except Debug.on) will be ignored. When your program

2023-09-05 Basic! Language Reference Page 53 of 209
exits, the broken-loop checks are not performed.

14.9 Debug.on
Syntax: Debug.on

Turns on debug mode. All debug commands will be executed when in the debug mode.

Debug.on also enables a simple debugging aid built into BASIC!. If debug is on, and your program
entered a loop but did not exit the loop cleanly, you will get a run-time error. See the looping
commands (For, While, and Do) for details.

14.10 Debug.print
Syntax: Debug.print

This command is exactly the same as the Print command except that the print will occur only while in
the debug mode.

14.11 Debug.show
Syntax: Debug.show

Pauses the execution of the program and displays a dialog box. The dialog box will contain the result
of the last Debug.show.<command> used or by default Debug.show.program.

There are three buttons in the dialog:

Resume: Resumes execution.

Step: Executes the next line while continuing to display the dialog box.

View Swap: Opens a new dialog that allows you to choose a different Debug View.

The BACK key closes the debug dialog and stops your program.

14.12 Debug.show.array
Syntax: Debug.show.array Array[]

Pauses the execution of the program and displays a dialog box. The dialog box prints the contents of
the specified array, the line number of the program line just executed and the text of that line. If the
array is multidimensional the entire array will be displayed in a linear fashion.

For a description of the dialog box controls, see the Debug.show command.

14.13 Debug.show.bundle
Syntax: Debug.show.bundle <bundlePtr_nexp>

Pauses the execution of the program and displays a dialog box. The dialog box prints the Bundle
pointed to by the Bundle Pointer numeric expression, the line number of the program line just executed
and the text of that line.

For a description of the dialog box controls, see the Debug.show command.

14.14 Debug.show.list
Syntax: Debug.show.list <listPtr_nexp>

Page 54 of 209 Basic! Language Reference 2023-09-05
Pauses the execution of the program and displays a dialog box. The dialog box prints the List pointed
to by the List Pointer numeric expression, the line number of the program line just executed and the text
of that line.

For a description of the dialog box controls, see the Debug.show command.

14.15 Debug.show.program
Syntax: Debug.show.program

Pauses the execution of the program and displays a dialog box. The dialog box shows the entire
program, with line numbers, as well as a marker pointing to the last line that was executed.

Note: the debugger does not stop on a function call. The first line of the function is executed and the
marker points to that line. When a Fn.rtn or Fn.end executes, the marker points to the function call.

For a description of the dialog box controls, see the Debug.show command.

14.16 Debug.show.scalars
Syntax: Debug.show.scalars

Pauses the execution of the program and displays a dialog box. The dialog box prints a list of all the
Scalar variable names and values, the line number of the program line just executed and the text of that
line. Scalar variables are the variable names that are not Arrays or Functions. Among other things, this
command will help expose misspelled variable names.

For a description of the dialog box controls, see the Debug.show command.

14.17 Debug.show.stack
Syntax: Debug.show.stack <stackPtr_nexp>

Pauses the execution of the program and displays a dialog box. The dialog box prints the Stack
pointed to by the Stack Pointer numeric expression, the line number of the program line just executed
and the text of that line.

For a description of the dialog box controls, see the Debug.show command.

14.18 Debug.show.watch
Syntax: Debug.show.watch

Pauses the execution of the program and displays a dialog box. The dialog box lists the values of the
variables being watched, the line number of the program line just executed and the text of that line.

For a description of the dialog box controls, see the Debug.show command.

14.19 Debug.watch
Syntax: Debug.watch var, ...

Gives a list of Scalar variables (not arrays) to be watched. The values of these variables will be shown
when the Debug.show.watch command is executed. This command is accumulative, meaning that
subsequent calls will add new variables into the watch list.

14.20 Echo.off
Syntax: Echo.off

2023-09-05 Basic! Language Reference Page 55 of 209
Turns off the Echo mode. Same as Debug.echo.off.

14.21 Echo.on
Syntax: Echo.on

Turns on Echo mode. Same as Debug.echo.off.

Page 56 of 209 Basic! Language Reference 2023-09-05
15 Files and Paths
Android devices may have several file storage devices. BASIC! uses one of these devices as its base
drive. You can select a different base drive in the Menu->Preferences item BASE DRIVE. In this manual,
the notation <pref base drive> refers to the base drive you selected in Preferences.

BASIC! can work with files anywhere on the base drive, but most file operations are done in BASIC!’s
base directory. Except when you create a standalone apk file, the base directory is <pref base
drive>/rfo-basic. All file paths are relative to a subdirectory of the base directory.

15.1 Paths Explained
A path describes where a file or directory is located relative to another directory.

A file is a container for data. A directory is a container for files and other directories. This container is
called a "directory" because it is a listing of the items it contains. You can also call it a "folder", and you
can say "a folder is a container for files and other folders." Both expressions mean the same thing. A
directory that is in a directory may have other directories in it, and those directories may contain other
directories, and so on. This results in a "tree" of directories and files, called a file system. A file system
organizes data on a storage device, such as a disk or a memory card.

Absolute paths: A path that is relative to the root directory is called an absolute path. For example,
the absolute path to pictures you take with an Android camera may be "/sdcard/DCIM/Camera". In
BASIC!, the base directory is not a root directory, so BASIC! does not use absolute paths.

Relative paths: A path that is relative to anything except the root directory is called a relative path.
Starting from "/sdcard", the relative path down to Camera is "DCIM/Camera". Use the "../" path
notation to go back up: from Camera, the path to "/sdcard/DCIM" is ".." and to "/sdcard" is "../.." .

The relative path from "/sdcard/DCIM/Camera" to "/sdcard/DCIM/.thumbnails" is "../.thumbnails". With
this notation, you can reach any file in the file system.

All paths in BASIC! are relative to a default path that depends on the kind of data you want to use.
These default paths are explained in the next section.

15.2 Paths in BASIC!
BASIC! files are stored in subdirectories of the base directory, "<pref base drive>/rfo-basic/". Files are
grouped by type, as follows:

 BASIC! program files are in rfo-basic/source/
 BASIC! data files are in rfo-basic/data/
 BASIC! SQLite databases are in rfo-basic/databases/

All of the BASIC! file commands assume a certain default path. The default path depends on the type
of file each command expects to handle:

 The Include and Run commands expect to load program files, so they look in rfo-basic/source/.

 SQLite operations look for database files in rfo-basic/databases/.

 All other file operations look for data files in rfo-basic/data/.

If you give a filename to a file command, it looks for that filename in the default directory for commands
of that type. If you want to work with a file that is not in that directory, you must specify a relative path
to the appropriate directory. BASIC! adds your path to the default path.

 To read the file "names.txt" in "rfo-basic/data/", the path is "names.txt".

2023-09-05 Basic! Language Reference Page 57 of 209
 To read the program file "sines.bas" in "rfo-basic/source", the path is "../source/sines.bas".

15.3 Paths Outside of BASIC!
BASIC! runs on an Android device, and its files are part of the Android file system.

You can use relative paths to access files outside of the base directory. To continue the example from
the previous section, assume the absolute Android path to the <pref base drive> is "/sdcard":

 To read the music file "rain.mp3" in "/sdcard/music/", the BASIC! path is "../../music/rain.mp3". The
path is relative to the default directory for general data "<pref base drive>/rfo-basic/data/".

Use care when writing paths that look up from the <pref base drive>. The directory name may not be
what you expect, and it may not be the same on all Android devices.

Every file on an Android device has an absolute path. Unfortunately, on most Android devices every file
has several absolute paths. The default <pref base drive> can be reached with the absolute Android
path "/sdcard". The name "sdcard" is a shortcut (a symbolic link) that means different things on
different devices. "<pref base drive>/rfo-basic/../" may not get to the Android directory "/sdcard", but to
something like "/storage/emulated/legacy".

You can use the command File.root to get the absolute Android path to the BASIC! <pref base drive>.

15.4 Paths and Case-sensitivity
While the Android file system is normally case-sensitive. However, the FAT file system, often used on
SD cards, memory sticks, etc., is case-insensitive. When handling files on these devices, Android –
and therefore BASIC! – can not differentiate between names that differ only in case. In your BASIC!
program, the two paths "../../music/rain.mp3" and "../../MUSIC/Rain.MP3" will both access the same file.

The rules change if you compile the same BASIC! program into a standalone apk. The file system
inside the apk is case-sensitive. The paths "../../music/rain.mp3" and"../../MUSIC/Rain.MP3" access
different files. If the actual path in your build project is "Assets/<project>/MUSIC/Rain.MP3", then using
the second path would succeed, but the first path would fail.

To prevent any error, it is good practice to match case exactly in file paths and names.

15.5 Mark and Mark Limit
Note: This is an advanced file management technique that you will rarely need to use. However, see
the note below about Out of Memory errors when reading very large files.

Every file has a mark and a mark limit. The mark is a position, and the mark limit is a size. As you read
a file, its data is copied into a buffer. The buffer starts at the mark, and its length is the mark limit.
BASIC! uses the buffer to allow you to reposition within the file. You are really repositioning within the
buffer.

If you do not mark a file, then the first time you read it or set a position in it, the mark is set at position 1
and the mark limit is set to the size of the file. This allows you to position and read anywhere in the file.

The Text.position.mark and Byte.position.mark commands override the default mark and mark limit.
You can change the mark and mark limit as often as you like, but there is only one mark in a file.

You cannot set a position before the mark. If you try, the file will be positioned at the mark. You will not
be notified that the current position is different from what you requested, but you can use
Text/Byte.position.get to determine the real position. Since the default mark position is 1, you can
position anywhere if you never set a mark.

You cannot make the buffer smaller. If you want the buffer to be smaller than the file, you must execute

Page 58 of 209 Basic! Language Reference 2023-09-05
Text/Byte.position.mark before reading the file or setting a position. The smallest buffer size available
is 8096 bytes, but it is not an error to specify a smaller number. Since the default mark limit is the file
size, you can position anywhere if you never set a mark limit.

If you read or position past the end of the buffer (more than marklimit bytes beyond the the mark), the
mark is invalid. It is an error to try to move the position backward when the mark is invalid. You will see
the error message "Invalid mark". Since the default buffer is the whole file, you will never see this
error if you never set a mark.

There is only one condition that requires you to use this command. If you open a very large file, the
default buffer size may be too large. Reading or positioning to the end of the file may cause an Out
Of Memory error. To avoid this error, your must use Text.position.mark to reduce the buffer size.

15.6 Files and Resources
If your program is compiled into an APK, file handling can be a little more complicated. The APK has
several internal directories, but the two of interest to us are the assets and res directories.

Standard BASIC! loads its sample programs and the data files they need from the assets directory of
the APK. Android treats the assets directory like a file system. At startup, BASIC! simply copies the
entire assets/rfo-basic directory to the SD card.

Your application can use the assets directory, too. Most of the BASIC! file-handling commands look in
the SD card file system first. If the file does not exist on the SD card, your program compiled into an
APK looks in your projects’ res directory, and finally in the assets directory. Resources may be built
into the APK in either the res or assets directory, but res is not treated as a file system and has more
restrictive naming rules. For example, the name of a resource in res must not contain spaces or
hyphens.

Both Byte.open and Text.open are able to open resources in your APK. However, Zip.open cannot
open resources; it looks only in the SD card file system. If you want to read a ZIP that is in assets,
you must first copy it from assets to the SD card. Then you can open the SD card file with Zip.Open.

File.Exists looks only for files on the SD card, but File.Type works with items in assets as well. You
can use them together to determine where an item is. The other File.* commands work with either files
or resources. Font.Load can load a resource if it does not find the font file on the SD card.

Files in assets are read-only. Your program can create and modify files on the SD card. It cannot
create or modify files in assets.

File names in assets are case-sensitive. If your program looks for a file on the SD card, the name is
not case-sensitive: "meow.wav" and "Meow.WAV" are the same file. However, to find a file in assets,
your program must name the file exactly as you put it in assets. Audio.Load aft, "meow.wav" will not
find assets/rfo-cats/data/Meow.WAV.

2023-09-05 Basic! Language Reference Page 59 of 209
16 File Commands

16.1 Dir
See File.dir.

16.2 File.delete
Syntax: File.delete <lvar>, <path_sexp>

The file or directory at <path_sexp> will be deleted, if it exists. If the file or directory did not exist before
the delete, or it could not be deleted, the <lvar> will contain zero. If the file or directory did exist and
was deleted, the <lvar> will be returned as not zero.

The default path is "<pref base drive>/rfo-basic/data/".

If <path_sexp> contains more than one directory level, as in "dir1/dir2/file1", this command will
try to delete only the last item. So in the above example, only "file1" would be deleted while the folders
"dir1" and "dir2" will not be deleted.

The following examples assume that "blabla" is a file:

file.delete L, "blabla" % deletes file "blabla" in directory
 % <pref base drive>/rfo-basic/data/

file.delete L, "dir1/blabla" % deletes file "blabla" in directory
 % <pref base drive>/rfo-basic/data/dir1/

The following examples assume that "blabla" is a directory:

file.delete L, "blabla" % deletes directory "blabla" from directory
 % <pref base drive>/rfo-basic/data/
 % but only if "blabla" is empty.

file.delete L, "dir1/blabla" % deletes directory "blabla" from directory
 % <pref base drive>/rfo-basic/data/dir1/

 % but only if "blabla" is empty.

16.3 File.dir
Syntax: File.dir <path_sexp>, Array$[] {,<dirmark_sexp>}

Returns the names of the files and directories in the path specified by <path_sexp>. The path is
relative to "<pref base drive>/rfo-basic/data/". Dir is a valid alias for this command.

The names are placed into Array$[]. The array is sorted alphabetically with the directories at the top of
the list. If the array exists, it is overwritten, otherwise a new array is created. The result is always a
one-dimensional array.

A directory is identified by a marker appended to its name. The default marker is the string "(d)". You
can change the marker with the optional directory mark parameter <dirmark_sexp>. If you do not want
directories to be marked, set <dirmark_sexp> to an empty string, "".

16.4 File.exists
Syntax: File.exists <lvar>, <path_sexp>

Reports if the <path_sexp> directory or file exists. If the directory or file does not exist, the <lvar> will
contain zero. If the file or directory does exist, the <lvar> will be returned as not zero.

Page 60 of 209 Basic! Language Reference 2023-09-05
The default path is "<pref base drive>/rfo-basic/data/".

16.5 File.mkdir
Syntax: File.mkdir <path_sexp>

Before you can use a directory, the directory must exist. Use this command to create a directory
named by the path string <path_sexp>. Mkdir is a valid alias for this command.

The new directory is created relative to the default directory "<pref base drive>/rfo-basic/data/". For
example:

 To create a new directory, "homes", in "<pref base drive>/rfo_basic/data/", use the path
"homes/", or simply "homes".

 To create a new directory, "icons", in the root directory of the SD card, use "../../icons".

If <path_sexp> contains more than one directory level, all levels will be created. For example:

file.makedir "one/two"

will create "<pref base drive>/rfo_basic/data/one/two".

16.6 File.rename
Syntax: File.rename <old_path_sexp>, <new_path_sexp>

The file or directory at old_path is renamed to new_path. If there is already a file present named
<new_path_sexp>, it is silently replaced. Rename is a valid alias for this command.

The default path is "<pref base drive>/rfo-basic/data/".

The rename operation can not only change the name of a file or a directory, it can also move the file or
directory to another directory.

For example:

Rename "../../testfile.txt", "testfile1.txt"

removes the file, testfile.txt, from "<pref base drive>/", places it into "sdcard/rfo-basic/data/" and also
renames it to testfile1.txt.

16.7 File.root
Syntax: File.root <svar>

Returns the canonical path from the file system root to "<pref base drive>/rfo-basic/data", the default
data directory, in <svar>. The <pref base drive> is expanded to the full absolute Android path from the
file system root, "/".

You cannot use this path in any BASIC! command, as BASIC! paths are relative to a command-
dependent default directory. However, you can use it to compute a relative path to parts of the Android
file system outside of the BASIC! <pref base drive>.

16.8 File.size
Syntax: File.size <size_nvar>, <path_sexp>

The size, in bytes, of the file at <path_sexp> is returned in <size_nvar>. If there is no file at
<path_sexp>, this command generates a run-time error.

2023-09-05 Basic! Language Reference Page 61 of 209
The <path_sexp> is appended to the default path, "<pref base drive>/rfo-basic/data/".

16.9 File.type
Syntax: File.type <type_svar>, <path_sexp>

Returns a one-character type indicator in <type_svar> for the file at <path_sexp>. The <path_sexp> is
appended to the default data path, "<pref base drive>/rfo-basic/data/". The type indicator values are:

Indicator: Meaning:
"d" "directory" – path names a directory
"f" "file" – path names a regular file
"o" "other" – path names a special file
"x" file does not exist

16.10 GrabFile
Syntax: GrabFile <result_svar>, <path_sexp>{, <unicode_flag_lexp>}

Copies the entire contents of the file at <path_sexp> to the string variable <result_svar>. By default,
GrabFile assumes that the file contains binary bytes or ASCII characters. If the optional
<unicode_flag_lexp> evaluates to true (a non-zero numeric value), GrabFile can read Unicode text.

If the file does not exist or cannot be opened, the <result_svar> is set to the empty string, "", and you
can use the GetError$() function to get more information. If the file is empty, the <result_svar> is an
empty string, "", but GetError$() returns "No error".

For text files, either ASCII or Unicode, the Split command can be used to split the <result_svar> into an
array of lines. GrabFile can also be used grab the contents of a text file for direct use with Text.input:

GRABFILE text$, "MyJournal.txt"
TEXT.INPUT EditedText$, text$

16.11 GrabURL
Syntax: GrabURL <result_svar>, <url_sexp>{, <timeout_nexp>}

Copies the entire source text of the URL <url_sexp> to the string variable <result_svar>. The URL may
specify an Internet resource or a local file. If the URL does not exist or the data cannot be read, the
<result_svar> is set to the empty string, "", and you can use the GetError$() function to get more
information.

If the optional <timeout_nexp> parameter is non-zero, it specifies a timeout in milliseconds. This is
meaningful only if the URL names a resource on a remote host. If the timeout time elapses and host
does not connect or does not return any data, GetError$ reports a socket timeout.

If the named resource is empty, the <result_svar> is empty, "", and GetError$() returns "No error".

The Split command can be used to split the <result_svar> into an array of lines.

16.12 Mkdir
See File.mkdir.

16.13 Rename
See File.rename.

Page 62 of 209 Basic! Language Reference 2023-09-05
17 File Byte I/O Commands
Byte file I/O can be used to read and write any type of file (.txt, .jpg, .pdf, .mp3, etc.). Each command
reads or writes one byte or a sequence of bytes as binary data.

17.1 Byte.close
Syntax: Byte.close <file_table_nexp>

Closes the previously opened file.

17.2 Byte.copy
Sytax: Byte.copy <file_table_nexp>,<output_file_sexp>

Copies the previously open input file represented by <file_table_nexp> to the file whose path is
specified by <output_file_sexp>. The default path is "<pref base drive>/rfo-basic/data/".

If <file_table_nexp> = -1 then a run-time error will be thrown.

All bytes from the current position of the input file to its end are copied to the output file. Both files are
then closed.

If you have read from the input file, and you want to copy the whole file, you must reset the file position
to 0 with Byte.position.set. However, if you have changed the file mark with Byte.position.mark, or if
you reading a non-local (internet) file, you can’t reset the file position to 0. Instead, you must close and
reopen the file.

You should use Byte.copy if you are using Byte I/O for the sole purpose of copying. It is thousands
(literally) of times faster than using Byte.read/Byte.write.

17.3 Byte.eof
Syntax: Byte.eof <file_table_nexp>, <lvar>

Reports an opened file’s end-of-file status. If the file is at EOF, the <lvar> is set true (non-zero). If the
file or directory is not at EOF, the <lvar> is set false (zero).

A file opened for write or append is always at EOF. A file opened for read is not at EOF until all of the
data has been read and then one more read is attempted. That read will have returned the value -1.
Byte.position.set may also position the file at EOF.

17.4 Byte.open
Syntax: Byte.open {r|w|a}, <file_table_nvar>, <path_sexp>

The file specified by the path string expression <path_sexp> is opened. If the path is a URL starting
with "http…" then an Internet file is opened. Otherwise, the <path_sexp> string is appended to the
default path "<pref base drive>/rfo-basic/data/".

The first parameter is a single character that sets the I/O mode for this file:

Parameter Mode Notes
r read File exists: Reads from the start of the file.

File does not exist: Error (see below).
w write File exists: Writes from the start of the file. Writes over any existing data.

File does not exist: Creates a new file. Writes from the start of the file.
a append File exists: Writing starts after the last line in the file.

File does not exist: Creates a new file. Writes from the start of the file.

2023-09-05 Basic! Language Reference Page 63 of 209
A file table number is placed into the numeric variable <file_table_nvar>. This value is for use in
subsequent Byte.read.*, Byte.write.*, Byte.eof, Byte.position.*, Byte.truncate, Byte.copy, or
Byte.close commands.

If a file opened for read does not exist then <file_table_nvar> will be set to -1. The program can check
for this and either create the file or report the error to the user, possibly using the GetError$() function.

17.5 Byte.position.get
Syntax: Byte.position.get <file_table_nexp>, <position_nvar>

Gets the position of the next byte to be read or written. The position of the first byte is 1. The position
value will be incremented by 1 for each byte read or written.

The position information can be used for setting up random file data access.

If the file is opened for append, the position returned will be the length of the file plus one.

17.6 Byte.position.mark
Syntax: Byte.position.mark {{<file_table_nexp>}{, <marklimit_nexp>}}

Marks the current position in the file, and sets the mark limit to <marklimit_nexp> bytes.

Both parameters are optional. If the file table index <file_table_nexp> is omitted, the default file is the
last file opened; you must ensure that the last file opened was a Byte file opened for reading. If the
mark limit <marklimit_exp> is omitted, the default value is the file’s current mark limit.

Please read Files and Paths  Mark and Mark Limit.

17.7 Byte.position.set
Syntax: Byte.position.set <file_table_nexp>, <position_nexp>

Sets the position of the next byte to be read from the file. If the position value is greater than the
position of the last byte of the file, the position will point to the end of file.

This command can only be used on files open for byte read.

17.8 Byte.read.buffer
Syntax: Byte.read.buffer <file_table_nexp>, <count_nexp>, <buffer_svar>

Reads the specified number of bytes (<count_nexp>) into the buffer string variable (<buffer_svar>) from
the file. The string length (len(<buffer_svar>)) will be the number of bytes actually read. If the end of
file is reached, the string length may be less than the requested count.

A buffer string is a special use of the BASIC! string. Each character of a string is 16 bits. When used
as a buffer, one byte of data is written into the lower 8 bits of each 16-bit character. The upper 8 bits
are 0. Extract the binary data from the string, one byte at a time, with the ASCII() or UCODE()
functions.

The format of the buffer string read by this command is compatible with the DECODE$() function. If
you know that part of your data contains an encoded string, you can extract the substring (using a
function like MID$()), then pass the substring to DECODE$() to convert it to a BASIC! string.

17.9 Byte.read.byte
Syntax: Byte.read.byte <file_table_nexp> {,<nvar>}...

Page 64 of 209 Basic! Language Reference 2023-09-05
Reads bytes from a file. The <file_table_nexp> parameter is a file table number returned by a previous
Byte.open. If the file number is -1 then the command throws a run-time error.

Places the byte(s) into the <nvar> parameter(s) as positive values, 0 <= byte <= 255. After the last byte
in the file has been read, further attempts to read from the file return the value -1. The result of the
Byte.eof command will be false after reading real data and true after reading at end-of-file (EOF).

This example reads a file and prints each byte, and prints "-1" at the end to show that the entire file has
been read.

BYTE.OPEN r, file_number, "testfile.jpg"
DO
 BYTE.READ.BYTE file_number, Byte
 PRINT Byte
UNTIL Byte < 0
BYTE.CLOSE file_number

17.10 Byte.read.number
Syntax: Byte.read.number <file_table_nexp> {,<nvar>...}

Reads numbers from the file specified by the file number parameter <file_table_nexp> and places them
into the numeric variables in the "{,<nvar>}..." parameter list. Each number is a group of 8 bytes.

If the file does not have enough data available for all of the variables, the value of one or more <nvar>
will be set to -1. This is indistinguishable from -1 read as actual data, except that the result of the
Byte.eof command will be false for real data and true for EOF.

Normally this command is used only to read values written with Byte.write.number. You must be sure
the file is positioned at the first byte of the eight-byte representation of a number, or you will get
unexpected results.

17.11 Byte.truncate
Syntax: Byte.truncate <file_table_nexp>,<length_nexp>

Truncates the file to <length_nexp> bytes and closes the file. Setting the truncate length
<length_nexp> larger than the current length (current write position - 1) has no effect.

This command can only be used on files open for byte write or append.

17.12 Byte.write.buffer
Syntax: Byte.write.buffer <file_table_nexp>, <buffer_sexp>

Writes the entire contents of the string expression to the file. The string is assumed to be a buffer string
holding binary data, as described in Byte.read.buffer. The writer discards the upper 8 bits of each 16-
bit character, writing one byte to the file for each character in the string.

The Byte.read.buffer command and the ENCODE$() function always create these "buffer strings".
You can construct one by using, for example, the CHR$() function with values less than 256.

If you use only ASCII characters in a string, you can use this function to write the string to a file. The
output is the same as if you had written it with Text.writeln, except that it will have no added newline.

17.13 Byte.write.byte
Syntax: Byte.write.byte <file_table_nexp> {{,<nexp>}...{,<sexp>}}

Writes bytes to the file specified by the file number parameter <file_table_nexp>. The bytes are written

2023-09-05 Basic! Language Reference Page 65 of 209
from an optional comma-separated list of numeric expressions, a single optional string expression, or
both.

 Numeric parameters: the command writes the low-order 8 bits of the value of each expression as a
single byte.

 String parameters: the command writes the entire string to the file. Each character of the string is
written as a single byte. See Byte.write.buffer for more information.

 If you have both numeric and string parameters, you may have only one string, and it must be last.

 The command accepts a string for backward compatibility. Byte.write.buffer is preferred.

Examples:
Byte.open w, f1, "tmp.dat" % create a file
Byte.write.byte f1, 10 % write one byte
Byte.write.byte f1, 11, 12, 13 % write three bytes
Byte.write.byte f1, "Hello!" % write six bytes
Byte.write.byte f1, 1,2,3,"abc" % write six bytes
Byte.write.byte f1, "one", "two" % syntax error: only one string allowed

Note: If the bytes are written from a string expression then the expression is evaluated twice. You
should not put calls to user-defined functions in the expression.

17.14 Byte.write.number
Syntax: Byte.write.number <file_table_nexp> {,<nexp>}...

Writes the values of the numeric expressions <nexp> to the file specified by the file number parameter
<file_table_nexp>. This command always writes 8 bytes for each expression in the parameter list.

Page 66 of 209 Basic! Language Reference 2023-09-05
18 File Text I/O Commands
The text file I/O commands are to be exclusively used for text (.txt) files. Text files are made up of lines
of characters that end in CR (Carriage Return) and/or NL (New Line). The text file input and output
commands read and write entire lines.

The default path is "<pref base drive>/rfo-basic/data/".

18.1 Text.close
Syntax: Text.close <file_table_nexp>

The previously opened file represented by <file_table_nexp> will be closed.

Note: It is essential to close an output file if you have written over 8k bytes to it. If you do not close the
file then the file will only contain the first 8k bytes.

18.2 Text.eof
Syntax: Text.eof <file_table_nexp>, <lvar>

Report an opened file’s end-of-file status. If the file is at EOF, the <lvar> is set true (non-zero). If the
file or directory is not at EOF, the <lvar> is set false (zero).

A file opened for write or append is always at EOF. A file opened for read is not at EOF until all of the
data has been read and then one more read is attempted. That read will have returned the string
"EOF". Text.position.set may also position the file at EOF.

18.3 Text.open
Syntax: Text.open {r|w|a}, <file_table_nvar>, <path_sexp>

The file specified by the path string expression <path_sexp> is opened. The default path is "<pref base
drive>/rfo-basic/data/". The <path_sexp> string is appended to the default path.

The first parameter is a single character that sets the I/O mode for this file:

Parameter Mode Notes
r read File exists: Reads from the start of the file.

File does not exist: Error (see below).
w write File exists: Writes from the start of the file. Writes over any existing data.

File does not exist: Creates a new file. Writes from the start of the file.
a append File exists: Writing starts after the last line in the file.

File does not exist: Creates a new file. Writes from the start of the file.

A file table number is placed into the numeric variable <file_table_nvar>. This value is for use in
subsequent Text.readln, Text.writeln, Text.eof, Text.position.*, or Text.close commands.

If a file being opened for read does not exist then the <file_table_nvar> will be set to -1. The BASIC!
programmer can check for this and either create the file or report the error to the user. Information
about the error is available from the GetError$() function.

Opening a file for append that does not exist creates an empty file. Finally, opening a file for write that
already exists deletes the contents of the file; that is, it replaces the existing file with a new, empty one.

18.4 Text.position.get
Syntax: Text.position.get <file_table_nexp>, <position_nvar>

2023-09-05 Basic! Language Reference Page 67 of 209
Get the position of the next line to be read or written to the file. The position of the first line in the file is
1. The position is incremented by one for each line read or written. The position information can be
used for setting up random file data access.

If a file is opened for append, the position returned will be relative to the end of the file. The position
returned for the first line to be written after a file is opened will be 1. You will have to add these new
positions to the known position of the end of the file when building your random access table.

18.5 Text.position.mark
Syntax: Text.position.mark {{<file_table_nexp>}{, <marklimit_nexp>}}

Marks the current line of the file, and sets the mark limit to <marklimit_nexp> bytes.

Both parameters are optional. If the file table index <file_table_nexp> is omitted, the default file is the
last file opened; you must ensure that the last file opened was a Text file opened for reading. If the
mark limit <marklimit_exp> is omitted, the default value is the file’s current mark limit.

Please read Files and Paths  Mark and Mark Limit.

18.6 Text.position.set
Syntax: Text.position.set <file_table_nexp>, <position_nexp>

Sets the position of the next line to read. A position value of 1 will read the first line in the file.

Text.position.set can only be used for files open for text reading.

If the position value is greater than the number of lines in the file, the file will be positioned at the end of
file. The position returned for Text.position.get at the EOF will be number of lines plus one in the file.

If you have marked a position in the file, you cannot set a position before the mark. You will not be
notified that the position is different from what you requested (see Text.position.mark).

18.7 Text.readln
Syntax: Text.readln <file_table_nexp> {,<svar>}...

Read the lines from the specified, previously opened file and write them into the <svar> parameter(s).
If <file_table_nexp> is -1, indicating Text.open failed, or if it is not a valid file table number, then the
command throws a run-time error.

After the last line in the file has been read, further attempts to read from the file place the characters
"EOF" into the <line_svar> parameter(s). This is indistinguishable from the string "EOF" read as actual
data, except that the result of the Text.eof command will be false after reading real data and true after
reading at end-of-file (EOF).

This example reads an entire file and prints each line.

TEXT.OPEN r, file_number, "testfile.txt"
DO
 TEXT.READLN file_number, line$
 PRINT line$
UNTIL line$ = "EOF"
TEXT.CLOSE file_number

The file will not automatically be closed when the end-of-file is read. Subsequent reads from the file will
continue to return "EOF".

When you are done reading a file, the Text.close command should be used to close the file.

Page 68 of 209 Basic! Language Reference 2023-09-05
18.8 Text.writeln
Syntax: Text.writeln <file_table_nexp>, <parms same as Print>

The parameters that follow the file table pointer are parsed and processed exactly the same as the
Print command parameters. This command is essentially a Print to a file.

Text.writeln with no parameters writes a newline. If a parameter line ends with a semicolon, the data
is not written to the file. It is stored in a temporary buffer until the next Text.writeln command that does
not end in a semicolon. There is only one temporary buffer no matter how many files you have open. If
you want to build partial print lines for more than one file at a time, do not use Text.writeln commands
ending with semicolons. Instead use string variables to store the temporary results. After the last line
has been written to the file, the Text.close command should be used to close the file.

2023-09-05 Basic! Language Reference Page 69 of 209
19 File ZIP I/O Commands
The ZIP file I/O commands work with compressed files. ZIP is an archive file format that stores multiple
directories and files, using a method of lossless data compression to save file space.

Use Zip.dir to get an array containing the names of all of the directories and files in an archive. Use
the file names with Zip.read to extract files from the archive. Zip.read can not extract a directory. Use
Zip.write to put files in a new archive. You can overwrite an existing ZIP file, but you cannot replace or
add entries.

19.1 Zip.close
Syntax: Zip.close <file_table_nexp>

Closes the previously opened ZIP file.

19.2 Zip.count
Syntax: Zip.count <path_sexp>, <nvar>

Returns the number of entries inside the ZIP file located at <path_sexp>. The path is relative to "<pref
base drive>/rfo-basic/data/".

The count is returned in the <nvar>. If the ZIP file does not exist, the returned count is 0.

19.3 Zip.dir
Syntax: Zip.dir <path_sexp>, Array$[] {,<dirmark_sexp>}

Returns the names of the files and directories inside the ZIP file located at <path_sexp>. The path is
relative to "<pref base drive>/rfo-basic/data/".

The names are placed into Array$[]. The array is sorted alphabetically with the directories at the top of
the list. If the array exists, it is overwritten, otherwise a new array is created. The result is always a
one-dimensional array.

A directory is identified by a marker appended to its name. The default marker is the string "(d)". You
can change the marker with the optional directory mark parameter <dirmark_sexp>. If you do not want
directories to be marked, set <dirmark_sexp> to an empty string, "".

19.4 Zip.open
Syntax: Zip.open {r|w}, <file_table_nvar>, <path_sexp>

The ZIP file specified by the path string expression <path_sexp> is opened. The path is relative to
"<pref base drive>/rfo-basic/data/".

The first parameter is a single character that sets the I/O mode for this file:

Parameter Mode Notes
r read File exists: Reads from the start of the file.

File does not exist: Error (see below).
w write File exists: Writes from the start of the file. Writes over any existing data.

File does not exist: Creates a new file. Writes from the start of the file.

Note: unlike Text.open and Byte.open, Zip.open does not support append mode.

A file table number is placed into the numeric variable <file_table_nvar>. This value is for use in
subsequent Zip.read, Zip.write, or Zip.close commands.

Page 70 of 209 Basic! Language Reference 2023-09-05
If there was an error opening the ZIP file, <file_table_nvar> is set to -1 with details available from the
GetError$() function.

19.5 Zip.read
Syntax: Zip.read <file_table_nexp> ,<buffer_svar>, <file_name_sexp>

Reads the content of the file <file_name_sexp> from inside a ZIP file and puts the result byte(s) inside
the buffer string variable <buffer_svar>.

The <file_table_nexp> parameter is a file table number returned by a previous Zip.open command. If
the file number is -1 then the command throws a run-time error.

If the file <file_name_sexp> is not found in the ZIP, <buffer_svar> is set to "EOF".

If the user tries to read the content of a zipped directory, instead of a zipped file, then the command
throws a run-time error. To read the contents of a zipped directory, use Zip.dir.

19.6 Zip.write
Syntax: Zip.write <file_table_nexp> ,<buffer_sexp>, <file_name_sexp>

Writes the contents of the string expression <buffer_sexp> into a ZIP, as a file named
<file_name_sexp>. The ZIP is in a file previously opened with Zip.open.

The string <buffer_sexp> is assumed to be a buffer string holding binary data, typically a string coming
from reading a local file with Byte.read.buffer.

2023-09-05 Basic! Language Reference Page 71 of 209
20 Font Commands
Your program can use fonts loaded from files. At present, the only way to use a loaded font is with the
Gr.Text.SetFont command.

20.1 Font.clear
Syntax: Font.clear

Clears the font list, deleting all previously loaded fonts. Any variable that points to a font becomes an
invalid font pointer. An attempt to use any of the deleted fonts is an error.

Note: Font.delete leaves a marker in the font list, so pointers to other fonts will not be affected. That is
why you can Font.delete the same font more than once. Font.clear clears the entire list, making all
font pointer variables invalid. After executing Font.clear, you can’t Font.delete any of the cleared
fonts.

20.2 Font.delete
Syntax: Font.delete {<font_ptr_nexp>}

Deletes the previously loaded font specified by the font pointer parameter <font_ptr_nexp>. Any
variable that points to the deleted font becomes an invalid font pointer. An attempt to use the deleted
font is an error. It is not an error to delete the same font again.

If the font pointer is omitted, the command deletes the most-recently loaded font that has not already
been deleted. Repeating this operation deletes loaded fonts in last-to-first order. It is not an error to do
this when there are no fonts loaded.

20.3 Font.load
Syntax: Font.load <font_ptr_nvar>, <filename_sexp>

Loads a font from the file named by the <filename_sexp>. Returns a pointer to the font in the variable
<font_ptr_nvar>. This pointer can be used to refer to the loaded font, for example, in a
Gr.Text.SetFont command.

If the font file can not be loaded, the pointer will be set to -1. You can call the GetError$() function to
get an error message.

Page 72 of 209 Basic! Language Reference 2023-09-05
21 FTP Client Commands
These FTP commands implement a FTP Client

21.1 Ftp.cd
Syntax: Ftp.cd <new_directory_sexp>

Changes the current working directory to the specified new directory.

21.2 Ftp.close
Syntax: Ftp.close

Disconnects from the FTP server.

21.3 Ftp.delete
Syntax: Ftp.delete <filename_sexp>

Deletes the specified file.

21.4 Ftp.dir
Syntax: Ftp.dir <list_nvar> {,<dirmark_sexp>}

Creates a list of the names of the files and directories in the current working directory and places it in a
BASIC! List data structure. A pointer to the new List is returned in the variable <list_nvar>.

A directory is identified by a marker appended to its name. The default marker is the string "(d)". You
can change the marker with the optional directory mark parameter <dirmark_sexp>. If you do not want
directories to be marked, set <dirmark_sexp> to an empty string, "".

The following code can be used to print the file names in that list:

ftp.dir file_list
list.size file_list,size

for i = 1 to size
 list.get file_list,i,name$
 print name$
next i

21.5 Ftp.get
Syntax: Ftp.get <source_sexp>, <destination_sexp>

The source file on the connected ftp server is downloaded to the specified destination file on the
Android device.

You can specify a subdirectory in the server source file string.

The destination file path is relative to "<pref base drive>/rfo-basic/data/" If you want to download a
BASIC! source file, the path would be, "../source/xxx.bas".

21.6 Ftp.mkdir
Syntax: Ftp.mkdir <directory_sexp>

Creates a new directory of the specified name.

2023-09-05 Basic! Language Reference Page 73 of 209
21.7 Ftp.open
Syntax: Ftp.open <url_sexp>, <port_nexp>, <user_sexp>, <pw_sexp>

Connects to the specified url and port. Logs onto the server using the specified user name and
password. For example:

ftp.open ”ftp.laughton.com”, 21, "basic", "basic"

21.8 Ftp.put
Syntax: Ftp.put <source_sexp>, <destination_sexp>

Uploads specified source file to the specified destination file on connected ftp server.

The source file is relative to the directory, "<pref base drive>/rfo-basic/data/" If you want to upload a
BASIC! source file, the file name string would be: "../source/xxxx.bas".

The destination file is relative to the current working directory on the server. If you want to upload to a
subdirectory of the current working directory, specify the path to that directory. For example, if there is
a subdirectory named "etc" then the filename, "/etc/name" would upload the file into that subdirectory.

21.9 Ftp.rename
Syntax: Ftp.rename <old_filename_sexp>, <new_filename_sexp>

Renames the specified old filename to the specified new file name.

21.10 Ftp.rmdir
Syntax: Ftp.rmdir <directory_sexp>

Removes (deletes) the specified directory if and only if that directory is empty.

Page 74 of 209 Basic! Language Reference 2023-09-05
22 GPS
These commands provide access to the raw location data reported by an Android device's GPS
hardware. Before attempting to use these commands, make sure that you have GPS turned on in the
Android Settings Application.

The Sample Program file, f15_gps.bas is a running example of the use of the GPS commands.

There are two kinds of data reports: GPS status and location data. They are not reported at the same
time, so there is no guarantee that overlapping information matches. For example, the location data
report includes a count of the satellites used in the most recent location fix. The same information can
be derived from the GPS status report. If number of detected satellites changes between reports, the
two numbers do not agree.

22.1 GPS Control Commands

22.1.1 Gps.close

Syntax: Gps.close

Disconnects from the GPS hardware and stops the location reports. GPS is automatically closed when
you stop your BASIC! program. GPS is not turned off if you tap the HOME key while your GPS
program is running.

22.1.2 Gps.open

Syntax: Gps.open {{<status_nvar>},{<time_nexp>},{<distance_nexp>}}

Connects to the GPS hardware and starts it reporting location information. This command must be
issued before using any of the other GPS commands.

The three parameters are all optional; use commas to indicate missing parameters. The parameters
are available for advanced usage. The most common way to use this command is simply GPS.open.

If you provide a status return variable <status_nvar>, it is set to 1.0 (TRUE) if the open succeeds, or 0.0
(FALSE) if the open fails. If the open fails, you may get information about the failure from the
GetError$() function.

The time interval expression <time_nexp> sets the minimum time between location updates. The time
is in milliseconds. If you do not set an interval, it defaults to the minimum value allowed by your
Android device. This is typically one second. Note: to reduce battery usage, Android recommends a
minimum interval of five minutes.

If you provide a distance parameter <distance_nexp>, it is a numerical expression that sets the
minimum distance between location updates, in meters. That is, your program will not be informed of
location changes until your device has moved at least as far as the minimum distance setting. If you do
not set a distance, any location change that can be detected will be reported.

This command attempts to get an initial "last known location". If the GPS hardware does not report a
last known location, BASIC! tries to get one from the network location service. If neither source can
provide one, the location information is left empty. If you use GPS commands to get location
information before the GPS hardware starts reporting current location information, you will get this "last
known location" data. The last known location may be stale, hours or days old, and so may not be
useful.

22.1.3 Gps.status

Syntax: Gps.status {{<status_var>}, {<infix_nvar>},{inview_nvar}, {<sat_list_nexp>}}

2023-09-05 Basic! Language Reference Page 75 of 209
Returns the data from a GPS status report. The parameters are all optional; use commas to indicate
omitted parameters (see Optional Parameters).

This kind of report contains the type of the last GPS event and a list of the satellites that were detected
by the GPS hardware when that event occurred. As a convenience, this command analyzes the
satellite list to report how many satellites were detected ("in view") and how many of those were used in
the last location fix ("in fix").

The GPS status report is not timestamped, and the first event reported to your program may be stale.
Do not rely on the data from the first status report alone to determine when the GPS hardware gets a
current location fix..

<status_var>: If provided, this variable returns the type of last GPS event that occurred. If you provide
a numeric variable, the event type is reported as a number. If it is a string variable, the event type is
reported as an English-language event name.

Event Number Event Name Meaning
1 Started The GPS system has been started, no location fixed yet
2 Stopped The GPS system has been stopped
3 First Fix The GPS system has received its first location fix since starting
4 Updated The GPS system has updated its location data

<infix_nvar>: If provided, this numeric variable returns the number of satellites used in the last location
fix. This is the number of satellites in the satellite list describe below whose "infix" value is TRUE (non-
zero). If the status report could not get a satellite list the number is unknown, so the variable is set to -
1.

<inview_nvar>: If provided, this numeric variable returns the number of satellites detected by the GPS
hardware. This is the number of satellites in the satellite list described below that have current data. It
is not necessarily the size of the list. If the status report could not get a satellite list the number is
unknown, so the variable is set to -1.

<sat_list_nexp>: If provided, the value of this numeric expression is used as a list pointer. If the value
is not a valid numeric list pointer, and the numeric expression is a single numeric variable, then a new
list is created and the numeric variable is set to point to the new list.

The satellite list is a list of bundle pointers. When the GPS system reports GPS status, it provides data
collected from the satellites it can detect. The data from each satellite is put in a bundle. The satellite
list has pointers to all of the satellite data bundles. You can use these pointers with any Bundle
command, just like any other bundle pointer.

If you provide an existing list, any bundles already in the list are cleared, except for the identifying
pseudo-random number (PRN). Anything else in the list is discarded. Then the new satellite data is
written into the satellite bundle. This is done so that a satellite that is lost and then regained will be
remembered in the satellite bundle, but its stale data will not be kept.

The number of satellite bundles with complete data matches the value of the <inview_var>. These
bundles are listed first. Any cleared bundles for satellites not currently visible are at the end of the list.

Each satellite bundle has five key/value pairs. All values are numeric. The value of "infix" is interpreted
as logical (Boolean).

KEY VALUE
prn Pseudo-Random Number assigned to the satellite for identification
elevation Elevation in degrees
azimuth Azimuth in degrees
snr Signal-to-noise ratio: a measure of signal strength

Page 76 of 209 Basic! Language Reference 2023-09-05
infix TRUE (non-zero) if the satellite’s data was used in the last location fix, else FALSE (0.0)

This is the only GPS command that returns information from both kinds of GPS data. The satellite
count returned in <count_nvar> comes from the location data report, and the satellite list returned in the
satellite list comes from the GPS status report. If nothing changes between reports, the number of
satellites with infix set TRUE is the same as the satellite count value, but this condition cannot be
guaranteed.

The satellite count value is also returned by the GPS.location command. The satellite list is also
returned or updated by the GPS.status command. This command, GPS.satellites, is retained for
backward-compatibility and for convenience.

For example, let’s say the most recent GPS status report had data from three satellites with PRNs 4, 7,
and 29.

GPS.OPEN sts
GPS.STATUS , , inView, sats
DEBUG.DUMP.LIST sats % may print 7.0, 29.0, 4.0

Assume appropriate delays after the GPS.open and that DEBUG is enabled. Another GPS status
report may report data from satellites 4, 7, and 8. Then the list dump might show 7.0, 4.0, 8.0, 29.0.
The order is unpredictable, except that 29.0 will be last, because it is not currently visible. In both
cases, the value of inView is 3.0.

Debug.dump.bundle of the satellite bundle with PRN 4 might show this:

Dumping Bundle 11
prn: 4.0
snr: 17.0
infix: 0.0
elevation: 25.0
azimuth: 312.0

22.2 GPS Location Commands
These commands report the values returned by the most recent GPS location report. The
Gps.satellites command also returns the list of satellites contained in a GPS status report.

A location report contains:
 the location provider

 the number of satellites used to generate the data in the report

 the time when the data was reported

 an estimate of the accuracty of the location components

 the location components:

o latitude

o longitude

o altitude

o bearing

o speed

There are individual commands available to read each element of a location report. If you use separate
GPS commands to read different components of the location data, you don’t know if the different

2023-09-05 Basic! Language Reference Page 77 of 209
components came from the same location report. To be certain of consistent data, get all of the
location components from a single Gps.location command.

22.2.1 Gps.accuracy

Syntax: Gps.accuracy <nvar>

Returns the accuracy level in <nvar>. If non-zero, this is an estimate of the uncertainty in the reported
location, measured in meters. A value of zero means the location is unknown.

22.2.2 Gps.altitude

Syntax: Gps.altitude <nvar>

Returns the altitude in meters in <nvar>.

22.2.3 Gps.bearing

Syntax: Gps.bearing <nvar>

Returns the bearing in compass degrees in <nvar>.

22.2.4 Gps.latitude

Syntax: Gps.latitude <nvar>

Returns the latitude in decimal degrees in <nvar>.

22.2.5 Gps.location

Syntax: Gps.location {{<time_nvar>}, {<prov_svar>}, {<count_nvar}, {<acc_nvar>}, {<lat_nvar>},
{<long_nvar>}, {<alt_nvar>}, {<bear_nvar>}, {<speed_nvar>}}

Returns the data from a single GPS location report. It returns all of the data provided by all of the
individual GPS location component commands below, except that it does not return the satellite list of
the Gps.satellites command.

The parameters are all optional; use commas to indicate missing parameters (see Optional
Parameters). All of the parameters are variable names, so if any parameter is not provided, the
corresponding data is not returned.

The parameters are:
<time_nvar>: time of the location fix, in milliseconds since the epoch, as reported by Gps.time.

<prov_svar>: the location provider, as reported by Gps.provider.

<count_nvar>: the number of satellites used to generate the location fix, as reported by
Gps.satellites.

<acc_nvar>: an estimate of the accuracy of the location fix, in meters, as reported by
Gps.accuracy.

<lat_nvar>: current latitude, in decimal degrees, as reported by Gps.latitude.

<long_nvar>: current longitude, in decimal degrees, as reported by Gps.longitude.

<alt_nvar>: current altitude, in meters, as reported by Gps.altitude.

<bear_nvar>: current bearing, in compass degrees, as reported by Gps.bearing.

<speed_nvar>: current speed, in meters per second, as reported by Gps.speed.

Page 78 of 209 Basic! Language Reference 2023-09-05
22.2.6 Gps.longitude

Syntax: Gps.longitude <nvar>

Returns the longitude in decimal degrees in <nvar>.

22.2.7 Gps.provider

Syntax: Gps.provider <svar>

Returns the name of the location provider in <svar>. Normally this is "gps". The first time you read
location data, you get the last known location, which may come from either the GPS hardware or the
network location service. If it came from the network, this command returns "network". If neither
provider reported a last known location, the provider <svar> is the empty string, "".

22.2.8 Gps.satellites

Syntax: Gps.satellites {{<count_nvar>}, {<sat_list_nexp>}}

Returns the number of satellites used for the last GPS fix and a list of the satellites known to the GPS
hardware.

Both parameters are optional. If you omit <count_nvar> but use <sat_list_nexp>, keep the comma.

If you provide a numeric variable <count_nvar>, it is set to the number of satellites used for the most
recent location data. If the location report did not provide a satellite count, <count_nvar> is set to -1.

For a description of the satellite list pointer expression <sat_list_nexp>, see the <sat_list_nexp>
parameter of the Gps.status command.

22.2.9 Gps.speed

Syntax: Gps.speed <nvar>

Returns the speed in meters per second in <nvar>.

22.2.10 Gps.time

Syntax: Gps.time <nvar>

Returns the time of the last GPS fix in milliseconds since "the epoch", January 1, 1970, UTC.

2023-09-05 Basic! Language Reference Page 79 of 209
23 Graphics

23.1 Introduction

23.1.1 The Graphics Screen and Graphics Mode

Graphics are displayed on a new screen that is different from the BASIC! Text Output Screen. The Text
Output Screen still exists and can still be written to. You can be returned to the text screen using the
BACK key or by having the program execute the Gr.front command.

The Gr.open command opens the graphics screen and puts BASIC! into the graphics mode. BASIC!
must be in graphics mode before any other graphics commands can be executed. Attempting to
execute any graphics command when not in the graphics mode will result in a run-time error. The
Gr.close command closes the graphics screen and turns off graphics mode. The graphics mode
automatically turns off when the BACK key or MENU key is tapped. BASIC! will continue to run after
the BACK key or MENU key is tapped when in graphics mode but the Output Console will be shown.

The BASIC! Output Console is hidden when the graphics screen is being displayed. No run-time error
messages will be observable. A haptic feedback alert signals a run-time error. This haptic feedback
will be a distinct, short buzz. Tap the BACK key to close the Graphics Screen upon feeling this alert.
The error messages can then read from the BASIC! Output Console.

Use the Gr.front command to swap the front-most screen between the Output Console and the
graphics screen.

Commands that use a new window or screen to interact with the user (Input, Select and others) may
be used in graphics mode.

When your program ends, the graphics screen will be closed. If you want to keep the graphics screen
showing, use a long pause or an infinite loop to keep the program from ending:

! Stay running to keep the graphics screen showing
do
until 0

Depending on your application, you may want to add a Pause to the loop to conserve battery power.
Tap the BACK key to break out of the infinite loop. The BACK key ends your program unless you trap it
with the OnBackKey: interrupt label.

23.1.2 Display Lists

Each command that draws a graphical object (line, circle, text, etc.) places that object on a list called
the Object List. The command returns the object's Object Number. This Object Number, or Object
Pointer, is the object’s position in the Object List. This Object Number can be used to change the
object on the fly. You can change the parameters of any object in the Object List with the Gr.modify
command. This feature allows you easily to create animations without the overhead of having to
recreate every object in the Object List.

To draw graphical objects on the graphics screen, BASIC! uses a Display List. The Display List
contains pointers to graphical objects on the Object List. Each time a graphical object is added to the
Object List, its Object Number is also added to the Display List. Objects are drawn on the screen in the
order in which they appear in the Display List. The Display List objects are not visible on the screen
until the Gr.render command is called.

You may use the Gr.NewDL command to replace the current Display List with a custom display list
array. This custom display list array may contain some or all of the Object Numbers in the Object List.

One use for custom display lists is to change the Z order of the objects. In other words you can use
this feature to change which objects will be drawn on top of other objects.

Page 80 of 209 Basic! Language Reference 2023-09-05
See the Sample Program file, f24_newdl, for a working example of Gr.NewDL.

23.1.3 Drawing Coordinates

The size and location of an object drawn on the screen are specified in pixels. The coordinates of the
pixel at the upper-left corner of the screen are x = 0 (horizontal position) and y = 0 (vertical position).
Coordinate values increase from left to right and from top to bottom of the screen.

Coordinates are measured with respect to the physical screen, not to anything on it. If you choose to
show the Android Status Bar, anything you draw at the top of the screen is covered by the Status Bar.

23.1.4 Drawing into Bitmaps

You can draw into bitmaps in addition to drawing directly to the screen. You notify BASIC! that you
want to start drawing into a bitmap instead of the screen with the Gr.bitmap.drawinto.start command.
This puts BASIC! into the draw-into-bitmap mode. All draw commands issued while in this mode will
draw directly into the bitmap. The objects drawn in this mode will not be placed into the Object List.
The Object Number returned by a draw command while in this mode is invalid and should not be used
for any purpose including Gr.modify.

The draw-into-bitmap mode is ended by the Gr.bitmap.drawinto.end command. Subsequent draw
commands will place the objects on the Object List and object numbers in the Display List for rendering
on the screen. If you wish to display the drawn-into bitmap on the screen, issue a Gr.bitmap.draw
command for that bitmap. The drawn-into bitmap may be drawn at any time before, during or after the
draw-into process.

23.1.5 Colors

BASIC! colors consist of a mixture of Red, Green, and Blue. Each component has a numerical value
ranging from 0 to 255. Black occurs when all three values are zero. White occurs when all three
values are 255. Solid Red occurs with a Redvalue of 255 while Blue and Green are zero.

Colors also have what is called an Alpha Channel. The Alpha Channel describes the level of
opaqueness of the color. An Alpha value of 255 is totally opaque. No object of any color can show
through an object with an Alpha value of 255. An Alpha value of zero renders the object invisible.

23.1.6 Paints

BASIC! holds drawing information such as color, font size, style and so forth, in Paint objects. The
Paint objects are stored in a Paint List. The last created Paint object (the "Current Paint") is associated
with a graphical object when a draw command is executed. The Paint tells the renderer (see
Gr.render) how to draw the graphical object. The same Paint may be attached to many graphical
objects so they will all be drawn with the same color, style, etc.

23.1.6.1 Basic usage

You can ignore Paints. This can keep your graphics programming simpler.

Each command that changes a drawing setting (Gr.color, Gr.text.size, etc.) affects everything you
draw from that point on, until you execute another such command.

23.1.6.2 Advanced usage

You can control the Paint objects used to draw graphical objects. The extra complexity allows you to
create special effects that are not otherwise possible. To use these effects, you must understand the
Paint List and the Current Paint.

Each command that changes a drawing setting (Gr.color, Gr.text.size, etc.) creates or modifies a
Paint. Each of these commands has an optional "Paint pointer" parameter. If you don’t specify which
Paint to use, the command first copies the Current Paint and then modifies it to make a new Paint,

2023-09-05 Basic! Language Reference Page 81 of 209
which then becomes the Current Paint. If you do specify which Paint to use, the command modifies
only the specified Paint, leaving the Current Paint unchanged.

The Current Paint is always the last Paint on the Paint List.If you specify the Paint object, the pointer
values -1 and 0 are special.

Paint pointer value -1 means the Current Paint. Using -1 is the same as omitting the Paint pointer
parameter.

Paint pointer value 0 refers to a "working Paint". You can change it as often as you like without
generating a new Paint. Paint 0 can not be attached to a graphical object. To make it useful, you must
copy it (Gr.paint.copy) to another location in the Paint List, or to the Current Paint.

You can get a pointer to the current Paint with the Gr.paint.get command. You can get a pointer to the
Paint associated with any graphical object by using the "paint" tag with Gr.get.value command. You
can assign that Paint to any other graphical object by using the "paint" tag with Gr.modify command.

Paints can not be individually deleted. You may delete all Paint objects, along with all graphics objects,
with Gr.cls.

The commands Gr.paint.copy and Gr.paint.reset operate directly on Paint objects.

23.1.7 Style

Most graphics objects are made up of two parts: an outline and the center. There is a subtle but
important difference in the rules governing how each part is drawn. The two parts are controlled by the
style setting of the Paint object, set by the style parameter of the Gr.color command.

Note: Gr.Point and Gr.Line are not affected by style. Only the STROKE part (outline) is drawn.

23.1.7.1 FILL

If you specify FILL (style 1), the center of the shape is filled as if it had an outline. That is, the center of
the object is colored, but the pixels colored by STROKE may be left uncolored. The area that is colored
depends on the coordinates of the shape. For example, consider a rectangle:

left: The left-most edge. All pixels with x-coordinate left are colored.

top: The upper-most edge. All pixels with y-coordinate top are colored.

right: One more than the right-most edge. All pixels with x-coord right - 1 are colored.

bottom: One more than the lower-most edge. Pixels with y-coord bottom - 1 are colored.

left and top values are "inclusive": pixels with x-coodinate left are colored. Pixels with y-coordinate
top are colored.

right and bottom values are "exclusive": pixels with x-coodinate right are not colored. Pixels with y-
coordinate bottom are not colored.

This is not what most people expect, but it is consistent with many operations in Java programming.

23.1.7.2 STROKE

If you specify STROKE (style 0), only the outline is drawn. The center of the shape is not colored. The
width of the outline is controlled by the stroke weight setting of the Paint, set by the Gr.stroke
command. If the stroke weight is 0 or 1 (they behave the same way), the outline is drawn exactly on
the coordinates you provide. For example, if the shape is a rectangle:

left: The left-most edge. All pixels with x-coordinate left are colored.

top: The upper-most edge. All pixels with y-coordinate top are colored.

Page 82 of 209 Basic! Language Reference 2023-09-05
right: The right-most edge. All pixels with x-coord right are colored.

bottom: The lower-most edge. All pixels with y-coord bottom are colored.

This is probably what you expect.

When you increase the stroke weight, the lines get wider, but the centers of the lines do not change.
Additional lines of pixels are colored on both sides of the outline. Increasing the stroke weight generally
increases the area of the shape, making it larger than the dimensions you specify.

This may not be what you expect. In some drawing systems, increasing the line width grows the line
inward only, toward the center of the shape, so the shape does not get any bigger.

23.1.7.3 STROKE and FILL

If you specify STROKE_AND_FILL (style 2), both parts of the shape are drawn and superimposed.
That is, the outline is drawn as described in STROKE, and the object is filled in as described in FILL.
Because both parts are the same color, and there are never uncolored pixels beween the STROKE
lines and the FILL area, the effect is to draw a single solid shape. Note that increasing the stroke
weight generally makes the shape bigger than the dimensions you specify.

23.1.8 Hardware Accelerated Graphics

Many Android devices since 3.0 (Honeycomb) support hardware acceleration of some graphical
operations. An app that can use the hardware Graphics Processor (GPU) may run significantly faster
than one that cannot use the GPU. Some of BASIC!’s graphical operations do not work with hardware-
acceleration, so it is disabled by default. You can turn it on with the Graphic Acceleration item of the
Editor->Menu->Preferences screen.

If you enable accelerated graphics, test your app thoroughly, comparing it to what you see with
acceleration off. If you see blurring, missing objects, or other problems, leave acceleration disabled.

23.2 Graphics Setup Commands

23.2.1 Gr.brightness

Syntax: Gr.brightness <nexp>

Sets the brightness of the graphics screen. The value of the numeric expression should be between
0.01 (darkest) and 1.00 (brightest).

23.2.2 Gr.close

Syntax: Gr.close

Closes the opened graphics mode. The program will continue to run. The graphics screen will be
removed. The text output screen will be displayed.

23.2.3 Gr.cls

Syntax: Gr.cls

Clears the graphics screen. Deletes all previously drawn objects; all existing object references are
invalid. Deletes all existing Paints and resets all Gr.color or Gr.text {size|align|bold|strike|underline|
skew} settings. Disposes of the current Object List and Display List and creates a new Initial Display
List.

2023-09-05 Basic! Language Reference Page 83 of 209
Note: bitmaps are not deleted. They will not be drawn because no graphical objects point to them, but
the bitmaps still exist. Variables that point to them remain valid.

The Gr.render command must be called to make the cleared screen visible to the user.

23.2.4 Gr.color

Syntax: Gr.color {{alpha}{, red}{, green}{, blue}{, style}{, paint}}

Sets the color and style for drawing objects. There are two ways to use this command.
 Basic usage: ignore the optional <paint> parameter. The new color and style will be used for

whatever graphical objects are subsequently drawn until the next Gr.color command is executed.

 Advanced usage: The "basic usage" of this command always creates a new Paint. If you prefer,
you can use the <paint> parameter to specify an existing Paint. The Gr.color command sets the
color and style of that Paint, changing the appearance of any graphical object to which it is
attached. The current Paint is not changed. See "Paints Advanced Usage" and the example below.

All of the parameters are optional. If a color component or the style is omitted, that component is left
unchanged. For example, Gr.color ,,0 sets only green to 0, leaving alpha, red, blue, and style as they
were. Use commas to indicate omitted parameters (see Optional Parameters).

Each of the four color components (alpha, red, green, blue) is a numeric expression with a value from 0
through 255. If a value is outside of this range, only the last eight bits of the value are used; for
example, 257 and 1025 are both the same as 1.

The style parameter, is a numeric expression that determines the stroking and filling of objects. The
effect of this parameter is explained in detail in the "Style" sections. The possible values for
<style_nexp> are shown in this table:

Value Meaning Description
0 STROKE Geometry and text drawn with this style will be stroked (outlined),

respecting the stroke-related fields on the paint.
1 FILL Geometry and text drawn with this style will be filled, ignoring all

stroke-related settings in the paint.
2 STROKE_AND_FILL Geometry and text drawn with this style will be filled and stroked at

the same time, respecting the stroke-related fields on the paint.

If you specify a value other than -1, 0, 1, or 2, then the style is set to 2. If you specify a style of -1, the
style is left unchanged, just as if the style parameter were omitted. If you never set a style, the default
value is 1, FILL.

You can change the stroke weight with commands such as Gr.set.stroke (see below) and the various
text style commands.

Example:
GR.OPEN
! basic usage
GR.COLOR ,0,0,255,2 % opaque blue, stroke and fill
GR.RECT r1, 50,50,100,100 % draw two squares
GR.RECT r2, 100,100,150,150
GR.COLOR 128,255,0,0 % half-transparent red
GR.RECT r3, 75,75,125,125 % draw an overlapping square
GR.RENDER : PAUSE 2000
! advanced usage
GR.GET.VALUE r1, "paint", p % get index of first Paint
GR.COLOR 255,0,255,0,,p % change that Paint’s color to opaque green
GR.RENDER : PAUSE 2000 % both r1 and r2 change
GR.RECT r4, 125,125,175,175 % use current Paint, unchanged
GR.RENDER : PAUSE 2000 % still draws half-transparent red

Page 84 of 209 Basic! Language Reference 2023-09-05
GR.CLOSE : END

23.2.5 Gr.front

Syntax: Gr.front flag

Determines whether the graphics screen or the Output Console will be the front-most screen. If flag =
0, the Output Console will be the front-most screen and seen by the user. If flag <> 0, the graphics
screen will be the front-most screen and seen by the user.

One use for this command is to display the Output Console to the user while in graphics mode. Use
Gr.front 0 to show text output and Gr.front 1 to switch back to the graphics screen.

Note: When the Output Console is in front of the graphics screen, you can still draw (but not render)
onto the graphics screen. The Gr.front 1 must be executed before any Gr.render.

Print commands will continue to print to the Output Console even while the graphic screen is in front.

23.2.6 Gr.open

Syntax: Gr.open {{alpha}{, red}{, green}{, blue}{, <ShowStatusBar_lexp>}{, <Orientation_nexp>}}

Opens the Graphics Screen and puts BASIC! into Graphics Mode. The color values become the
background color of the graphics screen. The default color is opaque white (255,255,255,255).

All parameters are optional; use commas to indicate omitted parameters (see Optional Parameters).

Each of the four color components is a numeric expression with a value from 0 through 255. If a value
is outside of this range, only the last eight bits of the value are used; for example, 257 and 1025 are the
same as 1. If any color parameter is omitted, it is set to 255.

The Status Bar will be shown on the graphics screen if the <ShowStatusBar_lexp> is true (not zero). If
the <ShowStatusBar_lexp> is not present, the Status Bar will not be shown.

The orientation upon opening graphics will be determined by the <Orientation_nexp> value.
<Orientation_nexp> values are the same as values for the Gr.orientation command (see below). If the
<Orientation_nexp> is not present, the default orientation is Landscape.

23.2.7 Gr.orientation

Syntax: Gr.orientation <nexp>

The value of the <nexp> sets the orientation of screen as follows:
-1 = Orientation depends upon the sensors.

 0 = Orientation is forced to Landscape.

 1 = Orientation is forced to Portrait.

 2 = Orientation is forced to Reverse Landscape.

 3 = Orientation is forced to Reverse Portrait.

You can monitor changes in orientation by reading the screen width and height using the the Gr.screen
or Screen commands.

23.2.8 Gr.render

Syntax: Gr.render

This command displays all the objects that are listed in the current working Display List. It is not

2023-09-05 Basic! Language Reference Page 85 of 209
necessary to have a Pause command after a Gr.render. The Gr.render command will not complete
until the contents of the Display List have been fully displayed.

Gr.render always waits until the next screen refresh. Most Android devices refresh the screen 60 times
per second; your device may be faster or slower. Therefore, if you execute two consecutive Gr.render
commands, there will be a delay of 16.7 milliseconds (on most devices) between the two commands.

For smooth animation, try to avoid doing more than 16.7 ms of work between Gr.render commands, to
achieve the maximum refresh rate. This is not a lot of time for a BASIC! program, so you may have to
settle for a lower frame rate. However, there is no benefit to trying to render more often than 16.7 ms.

If BASIC! is running in the background (see Background() function and Home command), Gr.render
will not execute. It will pause your program until you return BASIC! to the foreground.

23.2.9 Gr.scale

Syntax: Gr.scale x_factor, y_factor

Scale all drawing commands by the numeric x and y scale factors. This command is provided to allow
you to draw in a device-independent manner and then scale the drawing to the actual size of the screen
that your program is running on. For example:

! Set the device independent sizes
di_height = 480
di_width = 800

! Get the actual width and height
gr.open % defaults: white, no status bar, landscape
gr.screen actual_w, actual_h

! Calculate the scale factors
scale_width = actual_w /di_width
scale_height = actual_h /di_height

! Set the scale
gr.scale scale_width, scale_height

Now, start drawing based upon di_height and di_width. The drawings will be scaled to fit the device
running the program.

23.2.10 Gr.screen

Syntax: Gr.screen width, height{, density }

Returns the screen's width and height, and optionally its density, in the numeric variables. The density,
in dots per inch (dpi), is a standardized Android density value (usually 120, 160, or 240 dpi), and not
necessarily the real physical density of the screen.

If a Gr.orientation command changes the orientation, the width and height values from a previous
Gr.screen command are invalid.

Android’s orientation-change animation takes time. You may need to wait for a second or so after
Gr.open or Gr.orientation before executing Gr.screen, otherwise the width and height values may be
set before the orientation change is complete.

Gr.screen returns a subset of the information returned by the newer Screen command.

23.2.11 Gr.set.antialias

Syntax: Gr.set.antialias {{<lexp>}{,<paint_nexp>}}

Turns antialiasing on or off on objects drawn after this command is issued:

Page 86 of 209 Basic! Language Reference 2023-09-05
 If the value of the antialias setting parameter <lexp> is false (0), AntiAlias is turned off.

 If the parameter value is true (not zero), AntiAlias is turned on.

 If the parameter is omitted, the AntiAlias setting is toggled.

AntiAlias should generally be on. It is on by default.

AntiAlias must be off to draw single-pixel pixels and single-pixel-wide horizontal and vertical lines.

You may use the optional Paint pointer parameter <paint_nexp> to specify a Paint object to modify.
Normally this parameter is omitted. See Gr.color, Advanced usage for more information.

23.2.12 Gr.set.stroke

Syntax: Gr.set.stroke {{<nexp>}{,<paint_nexp>}}

Sets the line width of objects drawn after this command is issued. The <nexp> value must be >=0.
Zero produces the thinnest line and is the default stroke value.

The thinnest horizontal lines and vertical lines will be two pixels wide if AntiAlias is on. Turn AntiAlias
off to draw single-pixel-wide horizontal and vertical lines.

Pixels drawn by the Gr.set.pixels command will be drawn as a 2x2 matrix if AntiAlias is on. To draw
single-pixel pixels, set AntiAlias off and set the stroke = 0.

You may use the optional Paint pointer parameter <paint_nexp> to specify a Paint object to modify.
Normally this parameter is omitted. See Gr.color, Advanced usage for more information.

23.2.13 Gr.statusbar

Syntax: Gr.statusbar {<height_nvar>} {, showing_lvar}

Returns information about the Status Bar. If the height variable <height_nvar> is present, it is set to
the nominal height of the Status Bar. If the showing flag <showing_lvar> is present, it is set to 0 (false,
not showing) or 1 (true, showing) based on on how Graphics Mode was opened.

The parameters are both optional. If you omit the first parameter but use the second, you must keep
the comma.

23.2.14 Gr.statusbar.show

Syntax: Gr.statusbar.show <nexp>

This command has been deprecated. To show the status bar on the graphics screen, use the optional
fifth parameter in Gr.open.

23.3 Graphics Object Creation Commands
These commands create graphical objects and add them to the Object List, also adding their Object
Numbers to the Display List. You create each object with parameters that describe what to draw and
where. Once it is created, you can read back its parameters by name with the Gr.get.value command.
You can change any parameter with the Gr.modify command. The parameters you can modify are
listed with each command's description. Along with the parameters listed with each command, every
graphical object has two other modifiable parameters, "paint" and "alpha". See the Gr.modify and
Gr.paint.get command descriptions for more details.

There are three commands that create graphical objects that are not in this section: Gr.text.draw,

2023-09-05 Basic! Language Reference Page 87 of 209
Gr.bitmap.draw, and Gr.clip.

23.3.1 Gr.arc

Syntax: Gr.arc <obj_nvar>, left, top, right, bottom, start_angle, sweep_angle, fill_mode

Creates an arc-shaped object. The arc will be created within the rectangle described by the
parameters. It will start at the specified start_angle and sweep clockwise through the specified
sweep_angle. The angle values are in degrees.

The effect of the fill_mode parameter depends on the Gr.color style parameter:
 Style 0, fill_mode false: Only the arc is drawn.

 Style 0, fill_mode true: The arc is drawn with lines connecting each endpoint to the center of the
bounding rectangle. The resulting closed figure is not filled.

 Style non-0, fill_mode false: The endpoints of the arc are connected by a single straight line. The
resulting figure is filled.

 Style non-0, fill_mode true: The arc is drawn with lines connecting each endpoint to the center of
the bounding rectangle. The resulting closed figure is filled.

The <obj_nvar> returns the Object List object number for this arc. This object will not be visible until
the Gr.render command is called.

The Gr.modify parameters for Gr.arc are: "left", "top", "right", "bottom", "start_angle", "sweep_angle"
and "fill_mode". The value for "fill_mode" is either false (0) or true (not 0).

23.3.2 Gr.circle

Syntax: Gr.circle <obj_nvar>, x, y, radius

Creates a circle object. The circle will be created with the given radius around the designated center
(x,y) coordinates. The circle will or will not be filled depending upon the Gr.color style parameter. The
<obj_nvar> returns the Object List object number for this circle. This object will not be visible until the
Gr.render command is called.

The Gr.modify parameters for Gr.circle are "x", "y", and "radius".

23.3.3 Gr.line

Syntax: Gr.line <obj_nvar>, x1, y1, x2, y2

Creates a line object. The line will start at (x1,y1) and end at (x2,y2). The <obj_nvar> returns the
Object List object number for this line. This object will not be visible until the Gr.render command is
called.

The thinnest horizontal lines and vertical lines are drawn with Gr.set.stroke 0. These lines will be two
pixels wide if AntiAlias is on. Turn AntiAlias off to draw single-pixel wide horizontal and vertical lines.

The Gr.modify parameters for Gr.line are: "x1", "y1", "x2" and "y2".

23.3.4 Gr.oval

Syntax: Gr.oval <obj_nvar>, left, top, right, bottom

Creates an oval-shaped object. The oval will be located within the bounds of the parameters. The oval
will or will not be filled depending upon the Gr.color style parameter. The <obj_nvar> returns the
Object List object number for this oval. This object will not be visible until the Gr.render command is
called.

Page 88 of 209 Basic! Language Reference 2023-09-05
The Gr.modify parameters for Gr.oval are: "left", "top", "right" and "bottom".

23.3.5 Gr.point

Syntax: Gr.point <obj_nvar>, x, y

Creates a point object. The point will be located at (x,y). The <obj_nvar> returns the Object List object
number for this point. This object will not be visible until the Gr.render command is called.

The appearance of the point object is affected by the current stroke weight and the AntiAlias setting.
The object is rendered as a square, centered on (x,y) and as big as the current stroke. If AntiAlias is
on, it will blur the point, making it larger and dimmer. To color a single pixel, use Gr.set.stroke 0 and
Gr.set.antialias 0.

The Gr.modify parameters for Gr.point are: "x" and "y".

23.3.6 Gr.poly

Syntax: Gr.poly <obj_nvar>, list_pointer {,x, y}

Creates an object that draws a closed polygon of any number of sides. The <obj_nvar> returns the
Object List object number for this polygon. This object will not be visible until the next Gr.render.

The list_pointer is an expression that points to a List data structure. The list contains x,y coordinate
pairs. The first coordinate pair defines the point at which the polygon drawing starts. Each subsequent
coordinate pair defines a line drawn from the previous coordinate pair to this coordinate pair. A final line
drawn from the last point back to the first closes the polygon.

If the optional x,y expression pair is present, the values will be added to each of the x and y coordinates
of the list. This provides the ability to move the polygon array around the screen. The default x,y pair is
0,0. Negative values for x and y are valid.

The polygon line width, line color, alpha and fill are determined by previous Gr.color and Gr.set.stroke
commands just like any other drawn object. These attributes are owned by the poly object, not by the
list. If you use the same list in different Gr.poly commands, the color, stroke, etc., may be different.

You can change the polygon (add, delete, or move points) by directly manipulating the list with List
commands. You can change to a different list of points using Gr.Modify with "list" as the tag parameter.
Changes are not visible until the Gr.render command is called.

When you create a polygon with Gr.poly or attach a new list with Gr.modify, the list must have an even
number of values and at least two coordinate pairs (four values). These rules are enforced with run-
time errors. The rules cannot be enforced when you modify the list with List commands. Instead, if
you have an odd number of coordinates, the last is ignored. If you have only one point, Gr.render
draws nothing.

The Gr.modify parameters are "x", "y" and "list".

See the Sample Program file, f30_poly, for working examples of Gr.poly.

23.3.7 Gr.rect

Syntax: Gr.rect <ob_nvar>, left, top, right, bottom

Creates a rectangle object. The rectangle will be located within the bounds of the parameters. The
rectangle will or will not be filled depending upon the Gr.color style parameter. The <obj_nvar> returns
the Object List object number for this rectangle. This object will not be visible until the Gr.render
command is called.

The Gr.modify parameters for Gr.rect are: "left", "top", "right" and "bottom".

2023-09-05 Basic! Language Reference Page 89 of 209
23.3.8 Gr.set.pixels

Syntax: Gr.set.pixels <obj_nvar>, pixels[{<start>,<length>}] {,x,y}

Inserts an array of pixel points into the Object List. The array (pixels[]) or array segment
(pixels[start,length]) contains pairs of x and y coordinates for each pixel. The pixels[] array or array
segment may be any size but must have an even number of elements.

If the optional x,y expression pair is present, the values will be added to each of the x and y coordinates
of the array. This provides the ability to move the pixel array around the screen. The default values for
the x,y pair is 0,0. Negative values for the x,y pair are valid.

Pixels will be drawn as 2x2 matrix pixels if AntiAlias is on and the stroke = 0. To draw single-pixel
pixels, set AntiAlias off and set the stroke = 0. AntiAlias in on by default.

The <obj_nvar> returns the Object List object number for the object. The pixels will not be visible until
the Gr.render command is called.

The Gr.modify parameters for this command are "x" and "y".

In addition to modify, the individual elements of the pixel array can be changed on the fly. For example:

Pixels[3] = 120
Pixels[4] = 200

will cause the second pixel to be located at x = 120, y = 200 at the next rendering.

23.4 Graphics Groups
You can put graphical objects into groups. A group is a list of graphical objects. When you perform
certain operation on a group, the operation is performed on each object in the group.

You group graphical objects by creating a Group Object on the Display List. You use the group by
putting its object number in a graphics command where you would use any other graphical object
number.

In this version of BASIC!, you can use a Group Object in these commands:

 Gr.move: moves all of the objects by the same x and y amounts

 Gr.hide: hides all of the objects

 Gr.show: shows (unhides) all of the objects

 Gr.show.toggle: any objects that are showing will be hidden, and any objects that are
hidden will be shown.

You use graphics commands to act on the objects in the group’s list. You use the List commands to act
on the list: add objects, count the objects, clear the list, and so on.

Try running this example. Watch as the top circle moves to the right, then the top two, and finally the
top three, as circles are added one-by-one to the list attached to the group.

GR.OPEN ,,,,,1 : GR.COLOR ,255,0,0,2
GR.CIRCLE c1,100,100,40 : GR.CIRCLE c2,100,200,40
GR.CIRCLE c3,100,300,40 : GR.CIRCLE c4,100,400,40
GR.RENDER : PAUSE 1000 % draw four red circles

GR.GROUP g, c1 % create a group with one circle

Page 90 of 209 Basic! Language Reference 2023-09-05
GR.GET.VALUE g, "list", gList % get the group’s list of objects
GR.MOVE g, 0, 50 % move whole group 0 up/down, 50 right
GR.RENDER : PAUSE 1000 % only one circle moves

LIST.ADD gList, c2 % add another circle to the group’s list
GR.MOVE g, 0, 50
GR.RENDER : PAUSE 1000 % two circles move

LIST.ADD gList, c2 % add another circle to the group’s list
GR.MOVE g, 0, 50 % three circles move
GR.RENDER : PAUSE 1000

GR.CLOSE : END

23.4.1 Gr.group

Syntax: Gr.group <object_number_nvar>{, <obj_nexp>}...

Creates a group of graphical objects. All of the numeric expressions <obj_nexp> must evaluate to valid
graphical object numbers. The object numbers are put in a list and attached to the group.

The <object_number_nvar> returns the Object List object number for the group.

The Gr.modify parameter is "list".

23.4.2 Gr.group.getDL

Syntax: Gr.group.getDL <object_number_nvar>

Creates a group from the current Display List. The Display List is copied to a new list that is attached to
the group.

The <object_number_nvar> returns the Object List object number for the group.

The Gr.modify parameter is "list".

23.4.3 Gr.group.list

Syntax: Gr.group.list <object_number_nvar>, <list_ptr_nexp>

Creates a group from a list of graphical objects. The List is assumed to contain valid graphical object
numbers, but it is not checked. The list is simply attached to the group.

The list pointer parameter <list_ptr_nexp> is optional. If you provide an expression that evaluates to a
valid List pointer, the List that the pointer addresses supplies the graphical objects that are put in the
group. Otherwise, the group is empty. If you provide a numeric variable that does not already point to
a list, the variable is set to point to the group’s empty list.

The <object_number_nvar> returns the Object List object number for the group.

The Gr.modify parameter is "list".

23.4.4 Gr.group.newDL

Syntax: Gr.group.newDL <object_number_nvar>

Replaces the existing Display List with a new list read from the specified group.

The <object_number_nvar> returns the Object List object number for the group.

The Gr.modify parameter is "list".

2023-09-05 Basic! Language Reference Page 91 of 209
23.5 Graphics Hide and Show Commands

23.5.1 Gr.hide

Syntax: Gr.hide <object_number_nexp>

Hides the object with the specified Object Number. If the Object is a Group, all of the Graphical Objects
in the Group are hidden. This change will not be visible until the Gr.render command is called.

23.5.2 Gr.show

Syntax: Gr.show <object_number_nexp>

Shows (unhides) the object with the specified Object Number. If the Object is a Group, all of the
Graphical Objects in the Group are shown. This change will not be visible until the Gr.render
command is called.

23.5.3 Gr.show.toggle

Syntax: Gr.show.toggle <object_number_nexp>

Toggles visibility of the object with the specified Object Number. If it is hidden, it will be shown. If it is
shown, it will be hidden. If the Object is a Group, all of the Graphical Objects in the Group are toggled.
This change will not be visible until the Gr.render command is called.

23.6 Graphics Touch Query Commands
If the user touches the screen and then moves the finger without lifting the finger from the screen, the
motion can be tracked by repeatedly calling on the touch query commands. This will allow you to
program the dragging of graphical objects around the screen. The Sample Program, f23_breakout.bas,
illustrates this with the code that moves the paddle.

The OnGrTouch: label can be used optionally to interrupt your program when a new touch is detected.

The touch commands report on one- or two-finger touches on the screen. If the two fingers cross each
other on the x-axis then touch and touch2 will swap.

23.6.1 Gr.bounded.touch

Syntax: Gr.bounded.touch touched, left, top, right, bottom

The Touched parameter will be returned true (not zero) if the user has touched the screen within the
rectangle defined by the left, top, right, bottom parameters. If the screen has not been touched or has
been touched outside of the bounding rectangle, the touched parameter will be return as false (zero).
The command will continue to return true as long as the screen remains touched and the touch is within
the bounding rectangle.

The bounding rectangle parameters are for the actual screen size. If you have scaled the screen then
you need to similarly scale the bounding rectangle parameters. If the parameters that you used in
Gr.scale were scale_x and scale_y (Gr.scale scale_x, scale_y) then divide left and right by scale_x
and divide top and bottom by scale_y.

23.6.2 Gr.bounded.touch2

Syntax: Gr.bounded.touch2 touched, left, top, right, bottom

The same as Gr.bounded.touch except that it reports on second simultaneous touch of the screen.

Page 92 of 209 Basic! Language Reference 2023-09-05
23.6.3 Gr.onGrTouch.resume

Syntax: Gr.onGrTouch.resume

This command resumes an interrupted program. It should be included in an interrupt handler as
described in section OnGrTouch:.

23.6.4 Gr.touch

Syntax: Gr.touch touched, x, y

Tests for a touch on the graphics screen. If the screen is being touched, Touched is returned as true
(not 0) with the (x,y) coordinates of the touch. If the screen is not currently touched, Touched returns
false (0) with the (x,y) coordinates of the last previous touch. If the screen has never been touched, the
x and y variables are left unchanged. The command continues to return true as long as the screen
remains touched.

If you want to detect a single short tap, after detecting the touch, you should loop until touched is false.
DO
 GR.TOUCH touched, x, y
UNTIL touched

! Touch detected, now wait for
! finger lifted
DO
 GR.TOUCH touched, x, y
UNTIL !touched

The returned values are relative to the actual screen size. If you have scaled the screen then you need
to similarly scale the returned parameters. If the parameters that you used in Gr.scale were scale_x
and scale_y (Gr.scale scale_x, scale_y) then divide the returned x and y by those same values.

GR.TOUCH touched, x, y
Xscaled = x / scale_x
Yscaled = y / scale_y

23.6.5 Gr.touch2

Syntqax: Gr.touch2 touched, x, y

The same as Gr.touch except that it reports on second simultaneous touch of the screen.

23.6.6 OnGrTouch:

Syntax: OnGrTouch:

Interrupt handler that traps any touch on the Graphics screen. When done, execute the
Gr.onGrTouch.resume command to resume the interrupted program.

To detect touches on the Output Console (not in Graphics mode), use OnConsoleTouch:.

23.7 Graphics Text Commands
Gr.text.draw is the only text command that creates a graphical object. The other text commands set
attributes of text yet to be drawn or report measurements of text.

Each command that sets a text attribute (the Gr.text.align, bold, size, skew, strike, and underline
commands, as well as Gr.text.setfont and typeface) has an optional "Paint pointer" parameter that
may be used to specify a Paint object to modify. Normally this parameter is omitted, and the command
sets a text attribute for all text objects drawn after the command is executed. For using the Paint
pointer, see "Paints Advanced Usage".

2023-09-05 Basic! Language Reference Page 93 of 209
Gr.text.height returns information about how text would be drawn. It does not measure a drawn text
object, but uses information from the current Paint.

Gr.text.width and Gr.get.textbounds commands can return information about how text would be
drawn or how a text object was actually drawn. If used to measure the text of a string expression, they
use information from the current Paint. If used to measure the text of a text object that was already
drawn, they use information from the text object.

23.7.1 Gr.get.textbounds

Syntax: Gr.get.textbounds <exp>, left, top, right, bottom

Gets the boundary rectangle of a string as it would be drawn on the screen. The returned coordinate
values give you the dimensions of the bounding rectangle but not its location.

The parameter <exp> follows the same rules as Gr.text.width to get a text string and the text attributes
(typeface, size, and style) used to measure the string.

The coordinates of the rectangle are reported as if Gr.text.draw positioned your text at 0,0. You get the
actual boundaries of a text object by adding the textbounds offsets to the actual x,y coordinates of the
Gr.text.draw command.

In typeface terminology, the coordinate values are offsets from the beginning of the baseline of the text
(see Gr.text.draw and Gr.text.height for more explanation of the lines that define where text is drawn).
This is why the value returned for "top" is always a negative number.

If this is confusing, try running this example:

GR.OPEN ,,,,,-1
GR.COLOR 255,255,0,0,0
GR.TEXT.SIZE 40
GR.TEXT.ALIGN 1
s$ = "This is only a test"
GR.GET.TEXTBOUNDS s$,l,t,r,b
PRINT l,t,r,b
x=10 : y=50
GR.RECT rct,l+x,t+y,r+x,b+y
GR.TEXT.DRAW txt,x,y,s$
GR.RENDER
PAUSE 5000

23.7.2 Gr.text.align

Syntax: Gr.text.align {{<type_nexp>}{,<paint_nexp>}}

Align the text relative to the (x,y) coordinates given in the Gr.text.draw command.

type values: 1 = Left, 2 = Center, 3 = Right.

You may use the optional Paint pointer parameter <paint_nexp> to specify a Paint object to modify.
Normally this parameter is omitted. See Gr.color, Advanced usage for more information.

23.7.3 Gr.text.bold

Syntax: Gr.text.bold {{<lexp>}{,<paint_nexp>}}

Turns bold on or off on text objects drawn after this command is issued:

 If the value of the bold parameter <lexp> is false (0), text bold is turned off.

 If the parameter value is true (not zero), makes text appear bold.

Page 94 of 209 Basic! Language Reference 2023-09-05
 If the parameter is omitted, the bold setting is toggled.

If the color fill parameter is 0, only the outline of the bold text will be shown. If fill <>0, the text outline
will be filled.

This is a "fake bold", simulated by graphical techniques. It may not look the same as text drawn after
setting "Bold" style with Gr.text.setfont or Gr.text.typeface.

You may use the optional Paint pointer parameter <paint_nexp> to specify a Paint object to modify.
Normally this parameter is omitted. See Gr.color, Advanced usage for more information.

23.7.4 Gr.text.draw

Syntax: Gr.text.draw <object_number_nvar>, <x_nexp>, <y_nexp>, <text_object_sexp>

Creates and inserts a text object (<text_object_sexp>) into the Display List. The text object will use the
latest color and text preparatory commands. The <object_number_nvar> returns the Display List object
number for this text. This object will not be visible until the Gr.render command is called.

Gr.text.draw positions the text so the the bodies of the characters sit on a line called the baseline. The
tails of letters like "y" hang below the baseline.The y value <y_nexp> sets the location of this baseline.

The Gr.text.height command tells you the locations of the various lines used to draw text. The
Gr.text.width command tells you width of the space in which a specific string will be drawn. The
Gr.get.textbounds command tells you the locations of the left-, top-, right-, and bottom-most pixels
actually drawn for a specific text string.

The Gr.modify parameters for Gr.text.draw are "x", "y", and "text". The value for "text" is a string
representing the new text.

23.7.5 Gr.text.height

Syntax: Gr.text.height {<height_nvar>} {, <up_nvar>} {, <down_nvar>}

Returns height information for the current font and text size. All of the parameters are optional; use
commas to indicate omitted parameters (see Optional Parameters).

If the height variable <height_nvar> is present, it is set to the height in pixels of the space that will be
used to print most text in most languages. This is the value you set with Gr.text.size. In typeface
terminology, it is the "ascent" plus the "descent". The space contains the ascenders of letters like "h"
and the descenders of letters like "y".

Some letters, such as the Polish letter "Ż", may not fit in this space. The position of a line high enough
to contain all possible characters is returned in the up variable <up_nvar>, if it is present.

If the down variable <down_nvar> is present, it is set to the "descent" value. This position is low
enough to contain the lowest part of all possible characters, such as the tail of a "y".

Gr.text.draw positions text so the the body of the characters sit on a line called the baseline. The
down and up values are reported as offsets from this baseline. The up value is negative, because it
defines a position above the baseline. The down value is positive, because its position is below the
baseline. The height value is not an offset, so it is always positive. down - up is always larger than
height.

Sometimes you want to know the real screen positions of the top and bottom of the area where your
text will be drawn, independent of the actual text you will draw there. The bottom of this area is the y
coordinate of Gr.text.draw plus the down value of Gr.text.height. For most applications, the top of the
text area is the bottom position minus the height value of Gr.text.height, so y + down - height. For
some applications (such as a Polish text field), you may need the extra height you get with y + up.

2023-09-05 Basic! Language Reference Page 95 of 209
GR.TEXT.SIZE 40
GR.TEXT.HEIGHT ht, up, dn % ht is 40
GR.TEXT.DRAW t, x, y, "Hello, World!"
txtBottom = y + dn
txtTop = txtBottom - ht % good for most applications
txtTop = y + up % high enough for all possible text (up is negative)

23.7.6 Gr.text.setfont

Syntax: Gr.text.setfont {{<font_ptr_nexp>|<font_family_sexp>} {, <style_sexp>} {,<paint_nexp>}}

Set the text font, specifying typeface and style. Both of these parameters are optional. This command
is similar to the older Gr.text.typeface, but it is more flexible.

If the font parameter is a numerical expression <font_ptr_nexp>, it must be a font pointer value returned
by the Font.load command. You cannot modify the style of a font once it is loaded, so the the style
parameter <style_sexp> is ignored.

If the font parameter is a string expression <font_family_sexp>, it must specify one of the font families
available on your Android device. If your device does not recognize the string, the font is set to the
system default font typeface. On most systems, the default is "sans serif".

The standard font families are "monospace", "serif", and "sans serif". Some more recent versions
of Android also support "sans-serif", "sans-serif-light", "sans-serif-condensed", and "sans-serif-
thin". The font family names are not case-sensitive: "Serif" or "SERIF" works as well as "serif".

If you omit the font parameter, the command sets the most recently loaded font (see Font.load). If you
have deleted fonts (see Font.delete), the command sets the most recently loaded font that has not
been deleted. If you have not loaded any fonts, or if you have cleared them (see Font.clear), the
command sets the default font family.

If you specify a font family, you can use the style parameter <style_sexp> to change the font’s
appearance. The parameter value must be one of the style strings shown in the table below. You may
use either the full style name or an abbreviation as shown. The parameter is not case-senstive:
"BOLD", "bold", "Bold", and "bOlD" are all the same. If you use any other string, or if you omit the style
parameter, the style is set to "NORMAL".

Style Name Abbreviation

"NORMAL" "N"

"BOLD" "B"

"ITALIC" "I"

"BOLD_ITALIC" "BI"

Notes: The "monospace" font family always displays as "normal", regardless of the style parameter.
Some devices do not support all of the styles.

You may use the optional Paint pointer parameter <paint_nexp> to specify a Paint object to modify.
Normally this parameter is omitted. See Gr.color, Advanced usage for more information.

23.7.7 Gr.text.size

Syntax: Gr.text.size {{<size_nexp>}{,<paint_nexp>}}

Specifies the size of the text in pixels. The size <nexp> sets the nominal height of the characters. This
height is large enough to include the top of characters with ascenders, like "h", and the bottom of
characters with descenders, like "y". Character width is scaled proportionately to the height.

You may use the optional Paint pointer parameter <paint_nexp> to specify a Paint object to modify.

Page 96 of 209 Basic! Language Reference 2023-09-05
Normally this parameter is omitted. See Gr.color, Advanced usage for more information.

23.7.8 Gr.text.skew

Syntax: Gr.text.skew {{<skew_nexp>}{,<paint_nexp>}}

Skews the text to give an italic effect. Negative values of <nexp> skew the bottom of the text left. This
makes the text lean forward. Positive values do the opposite. Traditional italics can be best imitated
with <nexp> = -0.25.

You may use the optional Paint pointer parameter <paint_nexp> to specify a Paint object to modify.
Normally this parameter is omitted. See Gr.color, Advanced usage for more information.

23.7.9 Gr.text.strike

Syntax: Gr.text.strike {{<lexp>}{,<paint_nexp>}}

Turns overstrike on or off on text objects drawn after this command is issued:
 If the value of the strike parameter <lexp> is false (0), text strike is turned off.

 If the parameter value is true (not zero), text will be drawn with a strike-through line.

 If the parameter is omitted, the bold setting is toggled.

 You may use the optional Paint pointer parameter <paint_nexp> to specify a Paint object to modify.
Normally this parameter is omitted. See Gr.color, Advanced usage for more information.

23.7.10 Gr.text.typeface

Syntax: Gr.text.typeface {{<font_nexp>} {, <style_nexp>} {,<paint_nexp>}}

Set the text typeface and style. Both of these parameters are optional. The default value if you omit
either parameter is 1. All valid values and their meanings are shown in this table:

The values for <font_nexp> are: The values for <style_nexp> are:

1 Default font 1 Normal (not bold or italic)

2 Monospace font 2 Bold

3 Sans-serif font 3 Italic

4 Serif font 4 Bold and italic

This command is similar to the newer Gr.text.setfont, except that it is limited to the four typefaces
listed in the table. It cannot specify fonts loaded by the Font.load command.

Notes: The "Monospace" font (font 2) always displays as "Normal" (style 1), regardless of the style
parameter. Some devices do not support all of the styles.

You may use the optional Paint pointer parameter <paint_nexp> to specify a Paint object to modify.
Normally this parameter is omitted. See Gr.color, Advanced usage for more information.

23.7.11 Gr.text.underline

Syntax: Gr.text.underline {{<lexp>}{,<paint_nexp>}}

Turns underlining on or off on text objects drawn after this command is issued:
 If the value of the underline parameter <lexp> is false (0), text underlining is turned off.

 If the parameter value is true (not zero), drawn text will be underlined.

 If the parameter is omitted, the underline setting is toggled.

2023-09-05 Basic! Language Reference Page 97 of 209
You may use the optional Paint pointer parameter <paint_nexp> to specify a Paint object to modify.
Normally this parameter is omitted. See Gr.color, Advanced usage for more information.

23.7.12 Gr.text.width

Syntax: Gr.text.width <nvar>, <exp>

Returns the pixel width of a string (from <exp>) in the variable <nvar>.

 If the parameter <exp> is a string expression, the return value is the width of the string as if it were
displayed on the screen using the latest text attribute settings: the typeface, size, and style as set
by the Gr.text.* commands (or default values if you did not set them).

 If the parameter <exp> is a numeric expression, its value must be a text object number from
Gr.text.draw, or you will get a run-time error. The return value is the width of the text of the object
as it would be displayed on the screen by Gr.render.

Advanced usage: To calculate dimensions, both Gr.text.width and Gr.get.textbounds (below) use a
text string and a set of text attributes. The text attributes are kept in a Paint object. The source of the
string and the Paint depends on the type of the <exp> parameter:

If <exp> is a value of <exp> is source of text string is Source of text attributes is

string
expression

the string to measure value of <exp> Current Paint (most recent
Gr.text.* settings)

numeric
expression

a text object number
from Gr.text.draw

string from Gr.text.draw
(kept in text object)

Paint attached to the text object
(see Note, below)

Note: Gr.text.draw attaches a Paint to the text object using the text attributes that are current at that
time. This is the Paint Gr.render uses to display the text on the screen. If you modify this
Paint, the changes are reflected in values returned by Gr.text.width and Gr.get.textbounds,
and also shown on the screen with the next Gr.render.

23.8 Graphics Bitmap Commands
When a bitmap is created, it is added to a list of bitmaps. Commands that create bitmaps return a
pointer to the bitmap. The pointer is an index into the bitmap list. Your program works with the bitmap
through the bitmap pointer.

If you want to draw the bitmap on the screen, you must add a graphical object to the Object List. The
Gr.bitmap.draw command creates a graphical object that holds a pointer to the bitmap. Do not
confuse the bitmap with the graphical object. You cannot use the Object Number to access the bitmap,
and you cannot use the bitmap pointer to modify the graphical object.

Android devices limit the amount of memory available to your program. Bitmaps may use large blocks
of memory, and so may exceed the application memory limit. If a command that creates a bitmap
exceeds the limit, the bitmap is not created, and the command returns -1, an invalid bitmap pointer.
Your program should test the bitmap pointer to find out if the bitmap was created. If the bitmap pointer
is -1, you can call the GetError$() function to get information about the error.

If a command exceeds the memory limit, but BASIC! does not catch the out-of-memory condition, your
program terminates with an error message displayed on the Console screen. If you return the Editor, a
line will be highlighted near the one that exceeded the memory limit. It may not be exactly the right line.

Bitmaps use four bytes of memory for each pixel. The amount of memory used depends only on the
width and height of the bitmap. The bitmap is not compressed. When you load a bitmap from a file, the
file is usually in a compressed format, so the bitmap will usually be larger than the file..

Page 98 of 209 Basic! Language Reference 2023-09-05
23.8.1 Gr.bitmap.create

Syntax: Gr.bitmap.create <bitmap_ptr_nvar>, width, height

Creates an empty bitmap of the specified width and height. The specified width and height may be
greater than the size of the screen, if needed.

Returns a pointer to the created bitmap in the <bitmap_ptr_nvar> variable for use with the other
Gr.bitmap commands. If there is not enough memory available to create the bitmap, the returned
bitmap pointer is -1. Call GetError$() for information about the failure.

23.8.2 Gr.bitmap.crop

Syntax: Gr.bitmap.crop <new_bitmap_ptr_nvar>, <source_bitmap_ptr_nexp>, <x_nexp>,
<y_nexp>, <width_nexp>, <height_nexp>

Creates a cropped copy of an existing source bitmap specified by <source_bitmap_ptr_nexp>. The
source bitmap is unaffected; a rectangular section is copied into a new bitmap. A pointer to the new
bitmap is returned in <new_bitmap_nvar>. If there is not enough memory available to create the new
bitmap, the returned bitmap pointer is -1. Call GetError$() for information about the failure.

The <x_nexp>, <y_nexp> pair specifies the point within the source bitmap that the crop is to start at.
The <width_nexp>, <height_nexp> pair defines the size of the rectangular region to crop.

23.8.3 Gr.bitmap.delete

Syntax: Gr.bitmap.delete <bitmap_ptr_nexp>

Deletes an existing bitmap. The bitmap's memory is returned to the system.

This does not destroy any graphical object that points to the bitmap. If you do not Gr.hide such
objects, or remove them from the Display List, you will get a run-time error from the next Gr.render
command.

23.8.4 Gr.bitmap.draw

Syntax: Gr.bitmap.draw <object_ptr_nvar>, <bitmap_ptr_nexp>, x , y

Creates a graphical object that contains a bitmap and inserts the object into the Object List. The
bitmap is specified by the bitmap pointer <bitmap_ptr_nexp>. The bitmap will be drawn with its upper
left corner at the provided (x,y) coordinates. The command returns the Object List object number of the
graphical object in the <object_ptr_nvar> variable. This object will not be visible until the Gr.render
command is called.

The alpha value of the latest Gr.color will determine the transparency of the bitmap.

The Gr.modify parameters for Gr.bitmap.draw are "bitmap", "x" and "y".

2023-09-05 Basic! Language Reference Page 99 of 209
23.8.5 Gr.bitmap.drawinto.end

Syntax: Gr.bitmap.drawinto.end

End the draw-into-bitmap mode.Subsequent draw commands will place the objects into the display list
for rendering on the screen. If you wish to display the drawn-into bitmap on the screen, issue a
Gr.bitmap.draw command for that bitmap.

23.8.6 Gr.bitmap.drawinto.start

Syntax: Gr.bitmap.drawinto.start <bitmap_ptr_nexp>

Put BASIC! into the draw-into-bitmap mode.

All draw commands issued while in this mode draw directly into the bitmap. The objects drawn in this
mode are not placed into the display list. The object number returned by the draw commands while in
this mode is invalid and should not be used for any purpose including Gr.modify.

Note: Bitmaps loaded with the Gr.bitmap.load command cannot be changed with Gr.bitmap.drawinto.
To draw into an image loaded from a file, first create an empty bitmap then draw the loaded bitmap into
the empty bitmap.

23.8.7 Gr.bitmap.fill

Syntax: Gr.bitmap.fill <bitmap_ptr_nexp>, <x_nexp>, <y_nexp>

Change all of the points in an area of a bitmap to the current drawing color. The bitmap pointer
parameter <bitmap_ptr_nexp> must specify an existing bitmap. The x and y parameters <x_nexp> and
<y_nexp> must specify a point (x,y) in the bitmap. The area to color is a set of connected pixels all the
same color. The area may be any shape, and the point (x,y) may be any point in the area.

This command reads actual bitmap pixel colors, so it is affected by the antialiasing setting. If
antialiasing is on, the pixels at the edge of the colored area may not be re-colored correctly.

23.8.8 Gr.bitmap.load

Syntax: Gr.bitmap.load <bitmap_ptr_nvar>, <file_name_sexp>

Creates a bitmap from the file specified in the file_name string expression. Returns a pointer to the
created bitmap for use with other Gr.bitmap commands. If no bitmap is created, the returned bitmap
pointer is -1. Call GetError$() for information about the failure. Some of the possible causes are:

 The file or resource does not exist.

 There is not enough memory available to create the bitmap.

Bitmap image files are assumed to be located in the "<pref base drive>/rfo-basic/data/" directory.

Note: You may include path fields in the file name. For example, "../../Cougar.jpg" would cause BASIC!
to look for Cougar.jpg in the top level directory of the base drive, usually the SD card.
"images/Kitty.png" would cause BASIC! to look in the images(d) sub-directory of the
"/sdcard/rfo-basic/data/" ("/sdcard/rfo-basic/data/images/Kitty.png").

Note: Bitmaps loaded with this command cannot be changed with the Gr.bitmap.drawinto command.
To draw into an image loaded from a file, first create an empty bitmap then draw the loaded bitmap into
the empty bitmap.

23.8.9 Gr.bitmap.save

Syntax: Gr.bitmap.save <bitmap_ptr_nvar>, <filename_sexp>{, <quality_nexp>}

Saves the specified bitmap to a file. The default path is "<pref base drive>/rfo-basic/data/".

Page 100 of 209 Basic! Language Reference 2023-09-05
The file will be saved as a JPEG file if the filename ends in ".jpg". The range for <quality_nexp> is 0 to
100. The default is 50.

The file will be saved as a PNG file if the filename ends in anything else (including ".png").

23.8.10 Gr.bitmap.scale

Syntax: Gr.bitmap.scale <new_bitmap_ptr_nvar>, <bitmap_ptr_nexp>, width, height {,
<smoothing_lexp>}

Scales a previously loaded bitmap (<bitmap_ptr_nexp>) to the specified width and height and creates a
new bitmap <new_bitmap_ptr_nvar>. The old bitmap still exists; it is not deleted. If there is not enough
memory available to create the new bitmap, the returned bitmap pointer is -1. Call GetError$() for
information about the failure.

Negative values for width and height will cause the image to be flipped left to right or upside down.

Neither the width value nor the height value may be zero.

Use the optional smoothing logical expression (<smoothing_lexp>) to request that the scaled image not
be smoothed. If the expression is false (zero) then the image will not be smoothed. If the optional
parameter is true (not zero) or not specified then the image will be smoothed.

23.8.11 Gr.bitmap.size

Syntax: Gr.bitmap.size <bitmap_ptr_nexp>, width, height

Return the pixel width and height of the bitmap pointed to by <bitmap_ptr_nexp> into the width and
height variables.

23.8.12 Gr.get.bmpixel

Syntax: Gr.get.bmpixel <bitmap_ptr_nvar>, x, y, alpha, red, green, blue

Return the color data for the pixel of the specified bitmap at the specified x, y coordinate. The x and y
values must not exceed the length or width of the bitmap.

23.9 Graphics Paint Commands

23.9.1 Gr.paint.copy

Syntax: Gr.paint.copy {{<src_nexp>}{, <dst_nexp>}}

Copy the Paint object at the source pointer <src_nexp> to the destination pointer <dst_next>.

Both parameters are optional. If you wish to specify a destination, you must include a comma, whether
or not you specify a source. If either parameter is omitted, or if its value is -1, the current Paint is used.

The Paint already at the destination pointer is replaced. If the destination is the current Paint, a newly-
created paint becomes the current Paint.

This command has four forms, depending on which parameters are present:
GR.PAINT.COPY % Duplicate the current Paint
GR.PAINT.COPY m % Copy Paint m to the current Paint
GR.PAINT.COPY , n % Overwrite Paint n so it is the same as the current Paint
GR.PAINT.COPY m, n % Overwrite Paint n so it is the same as Paint m

2023-09-05 Basic! Language Reference Page 101 of 209
23.9.2 Gr.paint.get

Syntax: Gr.paint.get <object_ptr_nvar>

Gets a pointer (<object_ptr_nvar>) to the last created Paint object. For information about Paint objects,
see the section Graphics  Introduction  Paints.

This pointer can be used to change the Paint object associated with a draw object by means of the
Gr.modify command. The Gr.modify parameter is "paint".

If you want to modify any of the paint characteristics of an object then you will need to create a current
Paint object with those parameters changed. For example:

GR.COLOR 255,0,255,0,0
GR.TEXT.SIZE 20
GR.TEXT.ALIGN 2
GR.PAINT.GET the_paint
GR.MODIFY shot, "paint", the_paint

changes the current text size and alignment as well as the color.

23.9.3 Gr.paint.reset

Syntax: Gr.paint.reset {<nexp>}

Force the specified Paint to default settings:

Color opaque black (255, 0, 0, 0)
Antialias ON
Style FILL (0)
Minimum stroke width (0.0)

The parameter is optional. If the parameter is omitted or set to -1, a new current Paint is created with
default settings.

23.10 Graphics Rotate Commands
These commands put graphics objects on the Display List like the GR drawing commands, but they
don’t draw anything. Instead they work as markers in the list. When the renderer sees the start
marker, it temporarily rotates its coordinate system. The end marker tells the renderer to restore the
coordinate system to normal.

The effect is to rotate or move any objects drawn after Gr.rotate.start and before Gr.rotate.end.

As with any graphics object, the rotate parameters may be changed with Gr.modify. At the next
Gr.render, the rotated objects will be redrawn in their new positions.

23.10.1 Gr.rotate.end

Syntax: Gr.rotate.end {<obj_nvar>}

Ends the rotated drawing of objects. Objects created after this command will not be rotated.

The optional <obj_nvar> will contain the Object list object number of the Gr.rotate.end object. If you
are going to use rotated objects in the array for Gr.NewDl then you will need to include the
Gr.rotate.start and Gr.rotate.end objects.

23.10.2 Gr.rotate.start

Syntax: Gr.rotate.start angle, x, y{,<obj_nvar>}

Any objects drawn between the Gr.rotate.start and Gr.rotate.end will be rotated at the specified angle,

Page 102 of 209 Basic! Language Reference 2023-09-05
in degrees, around the specified (x,y) point. If the angle is positive, objects are rotated clockwise.

The optional <obj_nvar> will contain the Object list object number of the Gr.rotate.start object. If you
are going to use rotated objects in the array for Gr.NewDl then you will need to include the
Gr.rotate.start and Gr.rotate.end objects.

The Gr.modify parameters for Gr.rotate.start are "angle", "x" and "y".

Gr.rotate.start must be eventually followed by Gr.rotate.end or you will not get the expected results.

23.11 Graphics Camera Commands
There are three ways to use the camera from BASIC!:

1) The device’s built in Camera User Interface can be used to capture an image. This method
provides access to all the image-capture features that you get when you execute the device’s
Camera application. The difference is the image bitmap is returned to BASIC! for manipulation
by BASIC! The Gr.camera.shoot command implements this mode.

2) A picture can be taken automatically when the command is executed. This mode allows for
untended, time-sequenced image capture. The command provides for the setting the flash to
on, off and auto. The Gr.camera.autoshoot command implements this mode.

3) The third mode is the Gr.camera.manualshoot command which is much like the autoshoot
mode. The difference is that a live preview is provided and the image is not captured until the
screen is touched.

All pictures are taken at full camera resolution and stored with 100% jpg quality as "<pref base
drive>/rfo-basic/data/image.png".

All of these commands also return pointers to bitmaps. The bitmaps produced are scaled down by a
factor of 4. You may end up generating several other bitmaps from these returned bitmaps. For
example, you many need to scale the returned bitmap to get it to fit onto your screen. Any bitmaps that
you are not going to draw and render should be deleted using Gr.bitmap.delete to avoid out-of-
memory situations.

The Sample Program, f33_camera.bas, demonstrates all the modes of camera operations. It also
provides examples of scaling the returned image to fit the screen, writing text on the image and deleting
obsolete bitmaps.

The Sample Program, f34_remote_camera.bas, demonstrates remote image capture using two
different Android devices.

23.11.1 Gr.camera.autoshoot

Syntax: Gr.camera.autoshoot <bm_ptr_nvar>{, <flash_ mode_nexp> {, focus_mode_nexp} }

An image is captured as soon as the command is executed. No user interaction is required. This
command can be used for untended, time-sequence image captures.

The optional flash_mode numeric expression specifies the flash operation:

0 Auto Flash

1 Flash On

2 Flash Off

2023-09-05 Basic! Language Reference Page 103 of 209
3 Torch

4 Red-eye

The default, if no parameter is given, is Auto Flash.

The optional focus_mode numeric expression specifies the camera focus:

0 Auto Focus
1 Fixed Focus
2 Focus at Infinity
3 Macro Focus (close-up)

The default, if no parameter is given, is Auto Focus.

If you want to specify a focus mode, you must also specify a flash mode.

The command also stores the captured image into the file,
"<pref base drive>/rfo-basic/data/image.png".

23.11.2 Gr.camera.manualShoot

Syntax: Gr.camera.manualShoot <bm_ptr_nvar>{, <flash_ mode_nexp> {, focus_mode_nexp} }

This command is much like Gr.camera.autoshoot except that a live preview is shown on the screen.
The image will not be captured until the user taps the screen.

23.11.3 Gr.camera.select

Syntax: Gr.camera.select 1|2

Selects the Back (1) or Front(2) camera in devices with two cameras. The default camera is the back
(opposite the screen) camera.

If only one camera exists, then the default will be that camera. For example, if the device (such as the
Nexus 7) only has a Front Camera then it will be the default camera. If the device does not have any
installed camera apps, then there will be a run-time error message, "This device does not have a
camera." In addition, a run-time error message will be shown if the device does not have the type of
camera (front or back) selected.

23.11.4 Gr.camera.shoot

Syntax: Gr.camera.shoot <bm_ptr_nvar>

The command calls the device’s built in camera user interface to take a picture. The image is returned
to BASIC! as a bitmap pointed to by the bm_ptr numeric variable. If the camera interface does not, for
some reason, take a picture, bm_ptr will be returned with a zero value.

Many of the device camera interfaces will also store the captured images somewhere else in memory
with a date coded filename. These images can be found with the gallery application. BASIC! is not
able to prevent these extraneous files from being created.

Note: Some devices like the Nexus 7 do not come with a built in camera interface. If you have installed
an aftermarket camera application then it will be called when executing this command. You can take
pictures with the Nexus 7 (or similar devices) using the other commands even if you do not have
camera application installed. If the device does not have any installed camera apps, then there will be
a run-time error message, "This device does not have a camera."

Page 104 of 209 Basic! Language Reference 2023-09-05
23.12 Graphics Miscellaneous Commands

23.12.1 Gr.clip

Syntax: Gr.clip <object_ptr_nexp>, <left_nexp>, <top_nexp>, <right_nexp>, <bottom_nexp>{,
<RO_nexp>}

Objects that are drawn after this command is issued will be drawn only within the bounds (clipped) of
the clip rectangle specified by the "left, top, right, bottom" numeric expressions.

The final parameter is the Region Operator, <RO_nexp>. The Region Operator prescribes how this clip
will interact with everything else you are drawing on the screen or bitmap. If you issue more than one
Gr.clip command, the RO prescribes the interaction between the current Gr.clip rectangle and the
previous one. The RO values are:

0 Intersect
1 Difference
2 Replace
3 Reverse Difference
4 Union
5 XOR

The Region Operator parameter is optional. If it is omitted, the default action is Intersect.

Examples:

Original Clip 1 Clip 2

Clip 2 applied to Clip 1 with RO parameter on Clip 2

0 = Intersect 1 = Difference 2 = Replace

 3 = Reverse Difference 4 = Union 5 = XOR

Gr.clip is a display list object. It can be modified with Gr.modify. The modify parameters are "left",
"top", "right", "bottom", and "RO".

The Gr.show and Gr.hide commands can be used with the Gr.clip object.

2023-09-05 Basic! Language Reference Page 105 of 209
23.12.2 Gr.getDL

Syntax: Gr.getDL <dl_array[]> {, <keep_all_objects_lexp> }

Writes the current Display List into the numeric array <dl_array[]>. The array is specified without an
index. If the array exists, it is overwritten. Otherwise a new array is created. The result is always a
one-dimensional array. If the Display List is empty, the array will have one entry that does not display
anything.

By default, objects hidden with Gr.hide are not included in the returned array. To get all objects,
including hidden objects, set the optional keep_all_objects flag to true (any non-zero value).

23.12.3 Gr.get.params

Syntax: Gr.get.params <object_ptr_nexp>, <param_array$[]>

Get the modifiable parameters of the specified display list object. The parameter strings are returned in
the <param_array$[]> in no particular order. The array is specified without an index. If the array exists,
it is overwritten. Otherwise a new array is created. The result is always a one-dimensional array.

For a complete list of parameters, see the table in Gr.Modify.

23.12.4 Gr.get.pixel

Syntax: Gr.get.pixel x, y, alpha, red, green, blue

Returns the color data for the screen pixel at the specified x, y coordinate. The x and y values must not
exceed the width and height of the screen and must not be less than zero.

To get a pixel from the screen, BASIC! must first create a bitmap from the screen. If there is not
enough memory available to create the bitmap, you will get an "out-of-memory" run-time error.

23.12.5 Gr.get.position

Syntax: Gr.get.position <object_ptr_nexp>, x, y

Get the current x, y position of the specified display list object. If the object was specified with rectangle
parameters (left, top, right, bottom) then left is returned in x and top is returned in y. For Line objects,
the x1 and y1 parameters are returned.

23.12.6 Gr.get.type

Syntax: Gr.get.type <object_ptr_nexp>, <type_svar>

Get the type of the specified display list object. The type is a string that matches the name of the
command that created the object: "point", "circle", "rect", etc. For a complete list of types, see the table
in Gr.Modify.

If the <object_ptr_nexp> parameter does not specify a valid display list object, the returned type is the
empty string, "". You can call the GetError$() function to get information about the error.

23.12.7 Gr.get.value

Syntax: Gr.get.value <object_ptr_nexp> {, <tag_sexp>, <value_nvar | value_svar>}...

The value of the parameter named <tag_sexp> ("left", "radius", etc.) in the Display List object
<object_ptr_nvar> is returned in the variable <value_nvar> or <value_svar>. This command can return
values from only one object at a time, but you may list as many tag/variable pairs as you want.

Most parameters are numeric. Only the Gr.text.draw "text" parameter is returned in a string var. The
parameters for each object are given with descriptions of the commands in this manual. For a

Page 106 of 209 Basic! Language Reference 2023-09-05
complete list of parameters, see the table in Gr.Modify.

23.12.8 Gr.modify

Syntax: Gr.modify <object_ptr_nexp> {, <tag_sexp>, <value_nexp | value_sexp>}...

The value of the parameter named <tag_sexp> in the Display List object <object_ptr_nvar> is changed
to the value of the expression <value_nexp> or <value_sexp>. This command can change only one
object at a time, but you may list as many tag/value pairs as you want.

With this command, you can change any of the parameters of any object in the Display List. The
parameters you can change are given with the descriptions of the commands in this manual. In
addition there are two general purpose parameters, "paint" and "alpha" (see below for details).You must
provide parameter names that are valid for the specified object.

The results of Gr.modify commands will not be observed until a Gr.render command executes.

TYPE POSITION 1
(numeric)

POSITION 2
(numeric)

ANGLE/
RADIUS
(numeric)

UNIQUE
(various)

PAINT
(list ptr)

ALPHA
(num)

S
H

A
P

E
S

 a
nd

 O
B

JE
C

T
S

arc left top right bottom start_angle
sweep_angle

fill_mode paint alpha

bitmap x y bitmap paint alpha
circle x y radius paint alpha
line x1 y1 x2 y2 paint alpha
oval left top right bottom paint alpha

pixels x y paint alpha
point x y paint alpha
poly x y list paint alpha
rect left top right bottom paint alpha
text x y text paint alpha

MODI-
FIERS

clip left top right bottom RO paint alpha
group list paint alpha
rotate x y angle paint alpha

TABLE NOTES:

 The TYPE column shows the string returned by Gr.get.type for each graphical object type.

 Gr.get.position returns the values in the POSITION 1 columns.

 All table entries are Gr.modify tags (strings). Values of all the tags are numeric except for "text".

 The values of tags in the UNIQUE column are either strings ("text") or numbers with special
interpretations. "fill_mode" is a logical value. "list" is a pointer to a list of point coordinates.
"RO" is a Region Operator as explained in Gr.clip.

 "alpha" is an integer value from 0 to 256, with 256 interpreted specially. See General Purpose
Parameters, below.

 You can modify the Gr.set.pixels point-coordinates array directly. There is no Gr.modify tag.

For example, suppose a bitmap object was created with Gr.bitmap.draw BM_ptr, galaxy_ptr, 400, 120.

Executing gr.modify BM_ptr, "x", 420 would move the bitmap from x =400 to x = 420.
Executing gr.modify BM_ptr, "y", 200 would move the bitmap from y = 120 to y = 200.
Executing gr.modify BM_ptr, "x", 420, "y", 200 would change both x and y at the same time.
Executing gr.modify BM_ptr, "bitmap", Saturn_ptr would change the bitmap of an image of a

2023-09-05 Basic! Language Reference Page 107 of 209
(preloaded) Galaxy to the image of a (preloaded) Saturn.

23.12.8.1 General Purpose Parameters

When you create a graphical object, all the graphics settings (color, stroke, text settings, and so forth)
are captured in a Paint object. You can use the "paint" parameter to replace the Paint object, changing
any graphics setting you want to. See the Gr.paint.get command description (below) for more details.

Normally, graphical objects get their alpha channel value (transparency) from the latest Gr.color
command. You can change the "alpha" parameter to any value from 0 to 255. Setting alpha to 256
tells BASIC! to use the alpha from the latest color value.

For example, you can make an object slowly appear and disappear, just by changing its alpha with
Gr.modify.

Do
 For a = 1 to 255 step 10
 gr.modify object,"alpha",a
 gr.render
 pause 250
 next a

 For a = 255 to 1 step -10
 gr.modify object,"alpha",a
 gr.render
 pause 250
 next a
until 0

23.12.9 Gr.move

Syntax: Gr.move <object_ptr_nexp> {{, dx}{, dy}}

Moves the graphics object by the amounts dx and dy. If the object is a group, all of the graphical
objects in the group are moved. The dx and dy parameters are optional. If omitted they default to 0.

23.12.10 Gr.newDL

Syntax: Gr.newDL <dl_array[{<start>,<length>}]>

Replaces the existing display list with a new display list read from a numeric array (dl_array[]) or array
segment (dl_array[start,length]) of object numbers. Zero values in the array will be treated as null
objects in the display list. Null objects will not be drawn nor will they cause run-time errors.

See the Display List subtopic in this chapter for a complete explanation.

See the Sample Program file, f24_newdl, for a working example of this command.

23.12.11 Gr.save

Syntax: Gr.save <filename_sexp> {,<quality_nexp>}

Saves the current screen to a file. The default path is "<pref base drive>/rfo-basic/data/".

The file will be saved as a JPEG file if the filename ends in ".jpg".

The file will be saved as a PNG file if the filename ends in anything else (including ".png").

The optional <quality_nexp> is used to specify the quality of a saved JPEG file. The value may range
from 0 (bad) to 100 (very good). The default value is 50. The quality parameter has no effect on PNG
files which are always saved at the highest quality level.

Note: The size of the JPEG file depends on the quality. Lower quality values produce smaller files.

Page 108 of 209 Basic! Language Reference 2023-09-05
23.12.12 Gr.screen.to_bitmap

Syntax: Gr.screen.to_bitmap <bm_ptr_nvar>

The current contents of the screen will be placed into a bitmap. The pointer to the bitmap will be
returned in the bm_ptr variable. If there is not enough memory available to create the bitmap, the
returned bitmap pointer is -1. Call GetError$() for information about the failure.

Please note the idiosyncratic underscore in the command.

23.12.13 Gr_collision

Syntax: Gr_collision(<object_1_nexp>, <object_2_nexp>)

Gr_collision() is a function, not a command. The variables <object_1_nvar> and <object_2_nvar> are
the object pointers returned when the objects were created.

If the boundary boxes of the two objects overlap then the function will return true (not zero). If they do
not overlap then the function will return false (zero).

Objects that may be tested for collision are: rectangle, bitmap, circle, arc, oval, and text. In the case of
a circle, an arc, an oval, or text, the object’s rectangular boundary box is used for collision testing, not
the actual drawn object.

2023-09-05 Basic! Language Reference Page 109 of 209
24 HTML Commands
HTML commands allow you to interact with the Android Webview control.

24.1 Browse
Syntax: Browse <url_sexp>

If <url_sexp> starts with "http…" then the internet site specified by <url_sexp> will be opened and
displayed.

24.2 Html.clear.cache
Syntax: Html.clear.cache

Clears the HTML cache.

24.3 Html.clear.history
Syntax: Html.clear.history

Clears the HTML history.

24.4 Html.close
Syntax: Html.close

Closes the HTML engine and display.

24.5 Html.get.datalink
Syntax: Html.get.datalink <data_svar>

A datalink provides a method for sending a message from an HTML program to the BASIC!
programmer. There are two parts to a datalink in an HTML file:

1. The JavaScript that defines the datalink function

2. The HTML code that calls the datalink function.

The BASIC! Program requires a mechanism for communicating with a website's HTML code.

Html.get.datalink gets the next datalink string from the datalink buffer. If there is no data available
then the returned data will be an empty string (""). You should program a loop waiting for data:

DO
 HTML.GET.DATALINK data$
UNTIL data$ <> ""

The returned data string will always start with a specific set of four characters—three alphabetic
characters followed by a colon (":"). These four characters identify the return datalink data type. Most
of the type codes are followed by some sort of data. The codes are:

BAK: The user has tapped the BACK key. The data is either "1" or "0".

If the data is "0" then the user tapped BACK in the start screen. Going back is not possible
therefore HTML has been closed.

If the data is "1" then going back is possible. The BASIC! programmer should issue the
command Html.go.back if going back is desired.

LNK: The user has tapped a hyperlink. The linked-to url is returned. The transfer to the new url

Page 110 of 209 Basic! Language Reference 2023-09-05
has not been done. The BASIC! programmer must execute an Html.load.url with the returned
url (or some other url) for a transfer to occur.

ERR: Some sort of fatal error has occurred. The error condition will be returned. This error
code always closes the html engine. The BASIC! output console will be displayed.

FOR: The user has tapped the Submit button on a form with action=’FORM’ The form
name/value pairs are returned.

DNL: The user has clicked a link that requires a download. The download url is supplied. It is
up to the BASIC! programmer to do the download.

DAT: The user has performed some action that has caused some JavaScript code to send data
to BASIC! by means of the datalink. The JavaScript function for sending the data is:

<script type="text/javascript">
 function doDataLink(data) {
 Android.dataLink(data);
 }
</script>

24.6 Html.go.back
Syntax: Html.go.back

Go back one HTML screen, if possible.

24.7 Html.go.forward
Syntax: Html.go.forward

Go forward one HTML screen, if possible.

24.8 Html.load.string
Syntax: Html.load.string <html_sexp>

Loads and displays the HTML contained in the string expression. The base page for this HTML will be:

<pref base drive>/rfo-basic/data/

24.9 Html.load.url
Syntax: Html.load.url <file_sexp>

Loads and displays the file specified in the string <file_sexp>. The file may reside on the Internet or on
your Android device. In either case, the entire URL must be specified.

The command:

HTML.LOAD.URL "http://laughton.com/basic/"

will load and display the BASIC! home page.

The command:

HTML.LOAD.URL "htmlDemo1.html"

will load and display the html file "htmlDemo1.html" residing in BASIC!'s default "data" directory, as set
by your "Base Drive" preference. You may also use a fully-qualified pathname. With the default "Base
Drive" setting, this command loads the same file:

2023-09-05 Basic! Language Reference Page 111 of 209
HTML.LOAD.URL "file:///sdcard/rfo-basic/data/htmlDemo1.html"

When you tap the BACK key on the originally-loaded page, the HTML viewer will be closed and the
BASIC! output console will be displayed. If the page that was originally loaded links to another page
and then the BACK key is tapped, it will be up to the BASIC! programmer to decide what to do.

This command can also be used to execute JavaScripts that were included in the HTML file that is
currently displayed. For example, the command:

HTML.LOAD.URL "javascript:myFunction();"

will call the JavaScript function myFunction(). The function must already exist in the HTML that was
previously loaded via HTML.LOAD.STRING or HTML.LOAD.URL. For example:

<html>
<head>
 <script>
 function myFunction() {
 ...
 }
 </script>
</head>
...
</html>

If you need to pass parameters to the function, they must be included as strings:

Basic:

HTML.LOAD.URL "javascript:myFunction('123');"

HTML:

<html>
<head>
 <script>
 function myFunction(Parm) {
 ...
 }
 </script>
</head>
...
</html>

Note that JavaScript will accept single-quotes (') as well as double-quotes (").

If you need to pass parameters that are already in Basic variables you have to include them as part of
the string:

Basic:

Alfa = 123
Beta$ = "abc"

HTML.LOAD.URL "javascript:myFunction('" + str$(Alfa) + ~
 "', '" + Beta$ + "');"

HTML:

<html>
<head>
 <script>
 function myFunction(Parm1, Parm2) {
 ...
 }

Page 112 of 209 Basic! Language Reference 2023-09-05
 </script>
</head>
...
</html>

Note that numeric variables must be converted to strings to be passed as part of one big string. In the
above example, the string will become:

"javascript:myFunction('123', 'abc');"

24.10 Html.open
Syntax: Html.open {<ShowStatusBar_lexp> {, <Orientation_nexp>}}

This command must be executed before using the HTML interface.

The Status Bar will be shown on the Web Screen if the <ShowStatusBar_lexp> is true (not zero). If the
<ShowStatusBar_lexp> is not present, the Status Bar will not be shown.

The orientation upon opening the HTML screen will be determined by the <Orientation_nexp> value.
<Orientation_nexp> values are the same as values for the HTML.ORIENTATION command (see
below). If the <Orientation_nexp> is not present, the default orientation is determined by the orientation
of the device.

Both <ShowStatusBar_lexp> and <Orientation_nexp> are optional; however, a <ShowStatusBar_lexp>
must be present in order to specify an <Orientation_nexp>.

Executing a second HTML.OPEN before executing HTML.CLOSE will generate a run-time error.

24.11 Html.orientation
Syntax: Html.orientation <nexp>

The value of the <nexp> sets the orientation of screen as follows:
-1 = Orientation depends upon the sensors.

 0 = Orientation is forced to Landscape.

 1 = Orientation is forced to Portrait.

 2 = Orientation is forced to Reverse Landscape.

 3 = Orientation is forced to Reverse Portrait.

24.12 Html.post
Syntax: Html.post <url_sexp>, <list_nexp>

Execute a Post command to an Internet location.

<url_sexp> is a string expression giving the url that will accept the Post.

<list_nexp> is a pointer to a string list which contains the Name/Value pairs needed for the Post.

24.13 Http.post
Syntax: Http.post <url_sexp>, <list_nexp>, <result_svar>

Execute a Post command to an Internet location.

2023-09-05 Basic! Language Reference Page 113 of 209
<url_sexp> contains the url ("http://....") that will accept the Post.

<list_nexp> is a pointer to a string list which contains the Name/Value pairs needed for the Post.

<result_svar> is where the Post response will be placed.

Page 114 of 209 Basic! Language Reference 2023-09-05
25 Interrupts, Event Handlers and Errors
You can perform physical actions that tell your BASIC! program to do something. When you touch the
screen or press a key you cause an event. These events are asynchronous, that is, they happen at
times your program cannot predict. BASIC! detects some events so your program can respond to
them.

BASIC! handles events as interrupts. Each event that BASIC! recognizes has a unique Interrupt Label.
When an event occurs, BASIC! looks for the Interrupt Label that matches the event.
 If you have not written that Interrupt Label into your program, the event is ignored and your program

goes on running as if nothing happened.

 If you have included the right Interrupt Label for the event, BASIC! jumps to that label and continues
execution at the line after the label. This is called trapping the event.

BASIC! does not necessarily respond to the event as soon as it occurs. The statement that is
executing when the event occurs is allowed to complete, then BASIC! jumps to the Interrupt Label.

When you use an Interrupt Label to trap an event, BASIC! executes instructions until it finds a Resume
command that matches the Interrupt Label. During that time, it records other events but it does not
respond to them. The block of code between the Interrupt Label and the matching Resume may be
called an Interrupt Service Routine (ISR) or, if you prefer, an Event Handler.

When BASIC! executes the event’s Resume command, it resumes normal execution.

 BASIC! jumps back to where it was running when the interrupt occurred.

 BASIC! again responds to other events, including any that occurred while it was handling an event.

An Interrupt Label looks and behaves just like any other label in BASIC!. However, you must not
execute any of the Resume commands except to finish an event’s handler.

25.1 Interrupt Labels
BASIC! supports trapping of the following events:

Interrupt Label Resume Statement See Section

OnBackground: Background.resume 7.4 OnBackground: , 7.5 WakeLock

OnBackKey: Back.resume 25.4 OnBackKey:, Back.resume

OnBtReadReady: Bt.onReadReady.resume 8.13 OnBtReadReady: , 8.5 Bt.onReadReady.resume

OnConsoleTouch: ConsoleTouch.resume 13.10 OnConsoleTouch: , 13.8 ConsoleTouch.resume

OnError: None 25.2 OnError:

OnGrTouch: Gr.onGrTouch.resume 23.6.6 OnGrTouch: , 23.6.3 Gr.onGrTouch.resume

OnKbChange: Kb.resume 12.11 OnKbChange: , 12.10 Key.resume

OnKeyPress: Key.resume 12.12 OnKeyPress: , 12.10 Key.resume

OnLowMemory: LowMemory.resume 25.5 OnLowMemory:, LowMemory.resume

OnMenuKey: MenuKey.resume 25.6 OnMenuKey:, MenuKey.resume
OnTimer: Timer.resume 48.1 OnTimer: , 48.3 Timer.resume

2023-09-05 Basic! Language Reference Page 115 of 209

Most of the above interrupt labels and their Resume commands are described in various sections of
this manual. Some do not have appropriate sections, and are described here.

25.2 OnError:
Special interrupt label that traps a run-time error as if it were an event, except that:

 OnError: has no matching Resume command. You can use GoTo to jump anywhere in your
program.

 OnError: is not locked out by other interrupts.

 OnError: does not lock out other interrupts.

If a BASIC! program does not have an OnError: label and an error occurs while the program is running,
an error message is printed to the Output Console and the program stops running.

If the program does have an OnError: label, BASIC! does not stop on an error. Instead, it jumps to the
OnError: label (see "Interrupt Labels"). The error message is not printed, but it can be retrieved by the
GetError$() function.

Be careful. An infinite loop will occur if a run-time error occurs within the OnError: code. You should
not place an OnError: label into your program until the program is fully debugged. Premature use of
OnError: will make the program difficult to debug.

25.3 GetError$()
Return information about a possible error condition.

An error that stops your program writes an error message to the Console. If you trap the error with the
OnError: interrupt label, your program does not stop and the error is not printed. You can use
GetError$() to retrieve the error message.

Certain commands can report errors without stopping your program. These commands include
App.broadcast, App.start, Audio.load, Byte.open, Text.open, Zip.Open, Encrypt, Decrypt,
Font.load, GPS.open, GrabFile, GrabURL, Gr.get.type, the Encode$() and Decode$() functions, and
any command that can create a bitmap.

When you run one of these commands, you can call GetError$() to retrieve error information. For
example, if Text.open cannot open a file, it sets the file pointer to -1, and writes a GetError$()
message such as "<filename> not found". If no error occurred, GetError$() returns "No error".

Because there are commands that clear the error message, you should not expect GetError$() to
retain its message. Capture the message in a variable as soon as possible, and do not call GetError$
() again for the same error.

25.4 OnBackKey:, Back.resume
Interrupt handler that traps the BACK key. BASIC! executes the statements following the OnBackKey:
label until it reaches a Back.resume. If a BASIC! program does not have an OnBackKey: label, the
BACK key normally halts program execution.

If you trap the BACK key with OnBackKey:, the BACK key does not stop your program. You should
either terminate the run in the OnBackKey: code or provide another way for the user to tell your
program to stop, especially if the program is in Graphics mode where there is no menu. If you do not
then there will be no stopping the program (other than using Android Settings or a task killer
application).

Page 116 of 209 Basic! Language Reference 2023-09-05
25.5 OnLowMemory:, LowMemory.resume
Interrupt handler that traps the Android "low memory" warning. BASIC! executes the program lines
between the OnLowMemory: interrupt label and the LowMemory.resume command.

If Android is running out of memory, it may kill applications running in the background, but first it will
broadcast a "low memory" warning to all applications. If you do not have an OnLowMemory: label in
your program, you will see "Warning: Low Memory" printed on the Console.

25.6 OnMenuKey:, MenuKey.resume

Interrupt handler that traps the MENU key. BASIC! executes the statements following the OnMenuKey:
label until it reaches a MenuKey.resume. Note: This interrupt does not work unless your device has a
MENU key. Android devices since Honeycomb typically do not have a MENU key.

2023-09-05 Basic! Language Reference Page 117 of 209
26 List Commands
A List is similar to a single-dimension array. The difference is in the way a List is built and used. An
array must be dimensioned before being used. The number of elements to be placed in the array must
be predetermined. A List starts out empty and grows as needed. Elements can be removed, replaced
and inserted anywhere within the list.

There is no fixed limit on the size or number of lists. You are limited only by the memory of your device.

Another important difference is that a List is not a variable type. A numeric pointer is returned when a
list is created. All further access to the List is by means of that numeric pointer. One implication of this
is that it is easy to make a List of Lists. A List of Lists is nothing more than a numeric list containing
numeric pointers to other lists.

Lists may be copied into new Arrays. Arrays may be added to Lists.

All of the List commands are demonstrated in the Sample Program file, f27_list.bas.

26.1 List.add
Syntax: List.add <pointer_nexp>{, <exp>}...

Adds the values of the expressions <exp>... to specified list. The expressions must all be the same
type (numeric or string) as the list.

The list of <exp>s may be continued onto the next line by ending the line with the "~" character. The
"~" character may be used between <exp> parameters, where a comma would normally appear. The
"~" itself separates the parameters; the comma is optional.

The "~" character may not be used to split a parameter across multiple lines.

Examples:

List.add Nlist, 2, 4, 8 , n^2, 32

List.add Hours, 3, 4,7,0, 99, 3, 66~ % comma not required before ~
 37, 66, 43, 83,~ % comma is allowed before ~
 83, n*5, q/2 +j

List.add Name~
"Bill", "Jones"~
"James", "Barnes"~
"Jill", "Hanson"

26.2 List.add.list
Syntax: List.add.list <destination_list_pointer_nexp>, <source_list_pointer_nexp>

Appends the elements in the source list to the end of the destination list.

The two lists must be of the same type (string or numeric).

26.3 List.add.array
Syntax: List.add.array <list_pointer_nexp>, Array[{<start>,<length>}]

Appends the elements of the specified array (Array[]) or array segment (Array[start,length]) to the end
of the specified list.

The Array type must be the same as the list type (string or numeric).

Page 118 of 209 Basic! Language Reference 2023-09-05
26.4 List.clear
Syntax: List.clear <pointer_nexp>

Clears the list pointed to by the list pointer and sets the list’s size to zero.

26.5 List.create
Syntax: List.create N|S, <pointer_nvar>

Creates a new, empty list of the type specified by the N or S parameter. A list of strings will be created
if the parameter is S. A list of numbers will be created if the parameter is N. Do not put quotation
marks around the N or S.

The pointer to the new list will be returned in the <pointer_nvar> variable.

The newly created list is empty. The size returned for a newly created list is zero.

26.6 List.get
Syntax: List.get <pointer_nexp>, <index_nexp>, <var>

The list element specified by <index_nexp> in the list pointed to by <pointer_nexp> is returned in the
specified string or numeric variable <var>.

The index is one-based. The first element of the list is 1.

The return element variable type must match the list type (string or numeric).

26.7 List.insert
Syntax: List.insert <pointer_nexp>, <index_nexp>, <sexp>|<nexp>

Inserts the <sexp> or <nexp> value into the list pointed to by <pointer_nexp> at the index point
<index_nexp>. If the index point is one more than the current size of the list, the new item is added at
the end of the list.

The index is ones based. The first element of the list is 1.

The inserted element type must match the list type (string or numeric).

26.8 List.remove
Syntax: List.remove <pointer_nexp>,<index_nexp>

Removes the list element specified by <index_nexp> from the list pointed to by <pointer_nexp>.

The index is ones based. The first element of the list is 1.

26.9 List.replace
Syntax: List.replace <pointer_nexp>, <index_nexp>, <sexp>|<nexp>

The List element specified by <index_nexp> in the list pointed to by <pointer_nexp> is replaced by the
value of the string or numeric expression.

The index is one-based. The first element of the list is 1.

The replacement expression type (string or numeric) must match the list type.

2023-09-05 Basic! Language Reference Page 119 of 209
26.10 List.search
Syntax: List.search <pointer_nexp>, value|value$, <result_nvar>{,<start_nexp>}

Searches the specified list for the specified string or numeric value. The position of the first occurrence
is returned in the numeric variable <result_nvar>. If the value is not found in the list then the result is
zero.

If the optional start expression parameter is present, the search starts at the specified element. The
default start position is 1.

26.11 List.size
Syntax: List.size <pointer_nexp>, <nvar>

The size of the list pointed to by the list pointer is returned in the numeric variable <nvar>.

26.12 List.toArray
Syntax: List.toArray <pointer_nexp>, Array$[] | Array[]

Copies the list pointed to by the list pointer into an array. The array type (string or numeric) must be the
same as the list type. If the array exists, it is overwritten, otherwise a new array is created. The result
is always a one-dimensional array.

26.13 List.type
Syntax: List.type <pointer_nexp>, <svar>

The type of list pointed to by the list pointer is returned in the string variable <svar>.

 Returns the upper case character "S" if the list is a list of strings.

 Returns the upper case character "N" if the list is a list of numbers.

Page 120 of 209 Basic! Language Reference 2023-09-05
27 Math Functions
Math functions act like numeric variables in a <nexp> (or <lexp>).

27.1 Abs
Syntax: Abs(<nexp>)

Returns the absolute value of <nexp>.

27.2 Acos
Syntax: Acos(<nexp>)

Returns the arc cosine of the angle <nexp>, in the range of 0.0 through pi.The units of the angle are
radians. If the value of <nexp> is less than -1 or greater than 1, the function generates a runtime error.

27.3 Asin
Syntax: Asin(<nexp>)

Returns the arc sine of the angle <nexp>, in the range of -pi/2 through pi/2. The units of the angle are
radians. If the value of <nexp> is less than -1 or greater than 1, the function generates a runtime error.

27.4 Atan
Syntax: Atan(<nexp>)

Returns the arc tangent of the angle <nexp>, in the range of -pi/2 through pi/2. The units of the angle
are radians.

27.5 Atan2
Syntax: Atan2(<nexp_y>, <nexp_x>)

Returns the angle theta from the conversion of rectangular coordinates (x, y) to polar coordinates
(r,theta). Please note the order of the parameters in this function.

27.6 Band
Syntax: Band(<nexp1>, <nexp2>)

Returns the logical bitwise value of <nexp1> AND <nexp2>. The double-precision floating-point values
are converted to 64-bit integers before the operation.

Band(3,1) is 1

27.7 Bnot
Syntax: Bnot(<nexp>)

Returns the bitwise complement value of <nexp>. The double-precision floating-point value is
converted to a 64-bit integer before the operation.

Bnot(7) is -8
Hex$(Bnot(Hex("1234"))) is ffffffffffffedcb

27.8 Bor
Syntax: Bor(<nexp1>, <nexp2>)

2023-09-05 Basic! Language Reference Page 121 of 209
Returns the logical bitwise value of <nexp1> OR <nexp2>. The double-precision floating-point values
are converted to 64-bit integers before the operation.

Bor(1,2) is 3

27.9 Bxor
Syntax: Bxor(<nexp1>, <nexp2>)

Returns the logical bitwise value of <nexp1> XOR <nexp2>. The double-precision floating-point values
are converted to 64-bit integers before the operation.

Bxor(7,1) is 6

27.10 Cbrt
Syntax: Cbrt(<nexp>)

Returns the closest double-precision floating-point approximation of the cube root of <nexp>.

27.11 Ceil
Syntax: Ceil(<nexp>)

Rounds up towards positive infinity. 3.X becomes 4 and -3.X becomes -3.

27.12 Cos
Syntax: Cos(<nexp>)

Returns the trigonometric cosine of angle <nexp>. The units of the angle are radians.

27.13 Cosh
Syntax: Cosh(<nexp>)

Returns the trigonometric hyperbolic cosine of angle <nexp>. The units of the angle are radians.

27.14 ExpXP
Syntax: ExpXP(<nexp>)

Returns e raised to the <nexp> power.

27.15 Floor
Syntax: Floor(<nexp>)

Rounds down towards negative infinity. 3.X becomes 3 and -3.X becomes -4.

27.16 Frac
Syntax: Frac(<nexp>)

Returns the fractional part of <nexp>. 3.4 becomes 0.4 and -3.4 becomes -0.4.

Frac(n) is equivalent to "n – Int(n)".

27.17 Hypot
Syntax: Hypot(<nexp_x>, <nexp_y)

Page 122 of 209 Basic! Language Reference 2023-09-05
Returns Sqr(x2+y2) without intermediate overflow or underflow.

27.18 Int
Syntax: Int(<nexp>)

Returns the integer part of <nexp>. 3.X becomes 3 and -3.X becomes -3. This operation may also be
called truncation, rounding down, or rounding toward zero.

27.19 Log
Syntax: Log(<nexp>)

Returns the natural logarithm (base e) of <nexp>.

27.20 Log10
Syntax: Log10(<nexp>)

Returns the base 10 logarithm of the <nexp>.

27.21 Max
Syntax: Max(<nexp>, <nexp>)

Returns the maximum of two numbers as an <nvar>.

27.22 Min
Syntax: Min(<nexp>, <nexp>)

Returns the minimum of two numbers as an <nvar>.

27.23 Mod
Syntax: Mod(<nexp1>, <nexp2>)

Returns the remainder of <nexp1> divided by <nexp2>. If <nexp2> is 0, the function generates a
runtime error.

27.24 Pi
Syntax: Pi()

Returns the double-precision floating-point value closest to pi.

27.25 Pow
Syntax: Pow(<nexp1>, <nexp2>)

Returns <nexp1> raised to the <nexp2> power.

27.26 Round
Syntax: Round(<value_nexp>{, <count_nexp>{, <mode_sexp>}})

In it simplest form, Round(<value_nexp>), this function returns the closest whole number to <nexp>.
You can use the optional parameters to specify more complex operations.

The <count_nexp> is an optional decimal place count. It sets the number of places to the right of the

2023-09-05 Basic! Language Reference Page 123 of 209
decimal point. The last digit is rounded. The decimal place count must be >= 0. Omitting the
parameter is the same as setting it to zero.

The <mode_sexp> is an optional rounding mode. It is a one- or two-character mnemonic code that tells
Round() what kind of rounding to do. It is not case-sensitive. There are seven rounding modes:

Mode: Meaning: -3.8 -3.5 -3.1 3.1 3.5 3.8
"HD" Half-down -4.0 -3.0 -3.0 3.0 3.0 4.0
"HE" Half-even -4.0 -4.0 -3.0 3.0 4.0 4.0
"HU" Half-up -4.0 -4.0 -3.0 3.0 4.0 4.0
"D" Down -3.0 -3.0 -3.0 3.0 3.0 3.0
"U" Up -4.0 -4.0 -4.0 4.0 4.0 4.0
"F" Floor -4.0 -4.0 -4.0 3.0 3.0 3.0
"C" Ceiling -3.0 -3.0 -3.0 4.0 4.0 4.0

In this table, "down" means "toward zero" and "up" means "away from zero" (toward ±∞)

"Half" refers to behavior when a value is half-way between rounding up and rounding down(x.5 or -x.5).
"Half-down" rounds x.5 towards zero and "half-up" rounds x.5 away from zero.

"Half-even" is either "half-down" or "half-up", whichever would make the result even. 4.5 and 3.5 both
round to 4.0. "Half-even" is also called "banker’s rounding", because it tends to average out rounding
errors.

If you do not provide a <mode_sexp>, Round() adds +0.5 and rounds down (toward zero). This is
legacy behavior, copied from earlier versions of BASIC!. Round(n) is NOT the same as Round(n, 0).

Round() generates a runtime error if <count_nexp> < 0 or <mode_sexp> is not valid.

Examples:

pi = Round(3.14159) % pi is 3.0
pi = Round(3.14159, 2) % pi is 3.14
pi = Round(3.14159, , "U") % pi is 4.0
pi = Round(3.14159, 4, "F") % pi is 3.1415
negpi = Round(-3.14159, 4, "D") % negpi is -3.1416

Note that Floor(n) is exactly the same as Round(n, 0, "F"), but Floor(n) is a little faster. In the same
way, Ceil(n) is the same as Round(n, 0, "C"), and Int(n) is the same as Round(n, 0, "D").

27.27 Sgn
Syntax: Sgn(<nexp>)

Returns the signum function of the numerical value of <nexp>, representing its sign.

When the value is: Return:
> 0 1
= 0 0
< 0 -1

27.28 Shift
Syntax: Shift(<value_nexp>, <bits_nexp>)

Shifts the value <value_nexp> by the bit count <bits_nexp>. If the bit count is < 0, the value will be
shifted left. If the bit count is > 0, the bits will be shifted right. The right shift will replicate the sign bit.
The double-precision floating-point value are truncated to 64-bit integers before the operation.

Page 124 of 209 Basic! Language Reference 2023-09-05
27.29 Sin
Syntax: Sin(<nexp>)

Returns the trigonometric sine of angle <nexp>. The units of the angle are radians.

27.30 Sinh
Syntax: Sinh(<nexp>)

Returns the trigonometric hyperbolic sine of angle <nexp>. The units of the angle are radians.

27.31 Sqr
Syntax: Sqr(<nexp>)

Returns the closest double-precision floating-point approximation of the positive square root of <nexp>.
If the value of <nexp> is negative, the function generates a runtime error.

27.32 Tan
Syntax: Tan(<nexp>)

Returns the trigonometric tangent of angle <nexp>. The units of the angle are radians.

27.33 ToDegrees
Syntax: ToDegrees(<nexp>)

Converts <nexp> angle measured in radians to an approximately equivalent angle measured in
degrees.

27.34 ToRadians
Syntax: ToRadians(<nexp>)

Converts <nexp> angle measured in degrees to an approximately equivalent angle measured in
radians.

2023-09-05 Basic! Language Reference Page 125 of 209
28 Miscellaneous Commands

28.1 Headset
Syntax: Headset <state_nvar>, <type_svar>, <mic_nvar>

Reports if there is a headset plugged into your device, and returns data about the headset. The
parameters are all names of variables that receive the data:

 <state_nvar>: 1.0 if a headset is plugged in, 0.0 if no headset is plugged in, and -1.0 if unknown.

 <type_svar>: A string describing the device type of the last headset known to your device.

 <mic_nvar>: 1.0 if the headset has a microphone, 0.0 if the headset does not have a
microphone, and -1.0 if unknown.

If you plug in or unplug a headset, new information becomes available. Your program must run the
Headset command again to get the update.

28.2 Notify
Syntax: Notify <title_sexp>, <subtitle_sexp>, <alert_sexp>, <wait_lexp>

This command will cause a Notify object to be placed in the Notify (Status) bar. The Notify object
displays the BASIC! app icon and the <alert_sexp> text. The user taps the Notify object to open the
notification window. Your program’s notification displays the <title_sexp> and <subtitle_sexp> text.

The code snippet and screenshots shown below demonstrate the placement of the parameter strings.

If <wait_lexp> is not zero (true), then the execution of the BASIC! program will be suspended until the
user taps the Notify object. If the value is zero (false), the BASIC! program will continue executing.

The Notify object will be removed when the user taps the object, or when the program exits.

Print "Executing Notify"
Notify "BASIC! Notify", "Tap to resume running program",~
"BASIC! Notify Alert", 1
! Execution is suspended and waiting for user to tap the Notify Object
Print "Notified"

Note: the icon that appears in the Notify object will be the icon for the application in user-built apk.

Page 126 of 209 Basic! Language Reference 2023-09-05
28.3 Pause
Syntax: Pause <ticks_nexp>

Stops the execution of the BASIC! program for <ticks_nexp> milliseconds. One millisecond = 1/1000 of
a second. Pause 1000 will pause the program for one second. A pause can not be interrupted.

An infinite loop can be a very useful construct in your programs. For example, you may use it to wait
for the user to tap a control on the screen. A tight spin loop keeps BASIC! very busy doing nothing. A
Pause, even a short one, reduces the load on the CPU and the drain on the battery. Depending on
your application, you may want to add a Pause to the loop to conserve battery power:

DO : PAUSE 50 : UNTIL x <> 0

28.4 Swap
Syntax: Swap <nvar_a>|<svar_a>, <nvar_b>|<svar_b>

The values and in "a" and "b" numeric or string variables are swapped. The two variables must be of
the same type.

28.5 Tone
Syntax: <frequency_nexp>, <duration_nexp> {, duration_chk_lexp}

Plays a tone of the specified frequency in hertz (cycles per second) for the specified duration in
milliseconds.

The duration produced does not exactly match the specified duration. If you need to get an exact
duration, experiment.

Each Android device has a minimum tone duration. By default, if you specify a duration less than this
minimum, you get a run-time error message giving the minimum for your device. However, you can
suppress the check by setting the optional duration check flag <duration_chk_lexp> to 0 (false). If you
do this, the result you get depends on your device. You will not get a run-time error message, but you
may or may not get the tone you expect.

28.6 Vibrate
Syntax: Vibrate <pattern_array[{<start>,<length>}]>,<nexp>

The vibrate command causes the device to vibrate in the specified pattern. The pattern is held in a
numeric array (pattern_array[]) or array segment (pattern_array[start,length]).

The pattern is of the form: pause-time, on-time, …, pause-time, on-time. The values for pause-time
and on-time are durations in milliseconds. The pattern may be of any length. There must be at least
two values to get a single buzz because the first value is a pause.

If <nexp> = -1 then the pattern will play once and not repeat.
If <nexp> = 0 then the pattern will continue to play over and over again until the program ends.
If <nexp> > 0 then the pattern play will be cancelled.

See the sample program, f21_sos.bas, for an example of Vibrate.

28.7 Volume Keys
Certain keys and buttons have special meaning to your Android device. By default, BASIC! propagates
these special keycodes to the Android system, even if your program detects them. So, for example,
when you press the "Volume Up" button, your program can catch it (see INKEY$), but you still see the

2023-09-05 Basic! Language Reference Page 127 of 209
Volume Control window open on your screen, and your audio gets louder.

The VolKeys.off and VolKeys.on commands let you control this behavior for five keys. These keys
may be on the Android device or on a headset plugged into the device.

Volume Keys
Key Name

(Android docs)
Key Code
(decimal)

Usual Action

VOLUME_UP 24 Increase speaker volume
VOLUME_DOWN 25 Decrease speaker volume
VOLUME_MUTE 164 Mute the speaker (Android 3.0 or later)
MUTE 91 Mute the microphone
HEADSETHOOK 79 Hang up a call, stop media playback

28.7.1 VolKeys.off

Syntax: VolKeys.off

Disables the usual action of the keys listed in the Volume Keys table. Your program can still detect
these keypresses, but BASIC! does not pass the events on to the Android system.

28.7.2 VolKeys.on

Syntax: VolKeys.on

Enables the usual action of the keys listed in the Volume Keys table. This is the default setting when
your BASIC! program starts.

Page 128 of 209 Basic! Language Reference 2023-09-05
29 Program Control, Execution and Status Commands

29.1 Include
Syntax: Include FilePath

Before the program is run, the BASIC! preprocessor replaces any Include statements with the text from
the named file. You can use this to insert another BASIC! program file into your program at this point.
The program is not yet running, therefore the File Path cannot be a string expression.

You may include a file only once. If multiple Include statements name the same file, the preprocessor
inserts the contents of the file in place of the first such Include statement and deletes the others. This
prevents Out-Of-Memory crashes caused by an Include file including itself.

Include functions/DrawGraph.bas

inserts the code from the file "<pref base drive>/rfo-basic/source/functions/DrawGraph.bas" into the
program.

The File Path may be written without quotation marks, as in the example above, or with quotes:

Include "functions/DrawGraph.bas"

If present, the quotes prevent the preprocessor from forcing the File Path to lower-case. Normally, this
does not change how BASIC! behaves, because the file system on the SD card is case-insensitive.
DrawGraph.bas and drawgraph.bas both refer to the same file.

However, if you build your program into a standalone Android application, you can use virtual files in the
Android assets file system. File names in assets are case-sensitive, so you may need to use quotes
with the Include File Path.

Because Include is processed before your program starts running, it is not affected by program logic:

If 0
 Include functions/DrawGraph.bas
EndIf

In the above example, the contents of the included file will replace the Include statement in the body of
the If/Endif, but the statements are never executed because If 0 is always false.

However, an Include in a single-line If is ignored:

IF x THEN INCLUDE functions/DrawGraph.bas ELSE PRINT "bad!"

In this example, the file is not inserted in place of the Include statement.

29.2 Program.info
Syntax: Program.info <nexp>|<nvar>

Returns a Bundle that reports information about the currently running program. If you provide a
variable that is not a valid Bundle pointer, the command creates a new Bundle and returns the Bundle
pointer in your variable. Otherwise it writes into the Bundle your variable or expression points to.

The bundle keys and possible values are in the table below:

Key Type Value

BasPath String
Full path + name of the program currently being executed.
The path is relative to BASIC!’s "source/" directory.

2023-09-05 Basic! Language Reference Page 129 of 209
BasName String Name of the program currently being executed.

SysPath String
Full path to the BASIC!’s private file storage directory.
The path is relative to BASIC!’s "data/" directory.

UserApk
Numer

(Logical)

Returns 1.0 (true) if the current program is being run from a standalone
user-built APK.
Returns 0.0 (false) if the program is being from from the BASIC! Editor
or a Launcher Shortcut.

For example, assume:

 You are using the default <pref base drive>

 You downloaded a file called "my_program.bas" to the standard Android Download directory.

 You used the BASIC! Editor to load and run the downloaded program.

Then the returned values would be as follows:

Key Value

BasPath ../../Download/my_program.bas

SysPath ../../../../../data/data/com.rfo.basic

BasName my_program.bas

UserApk 0.0

SysPath is of particular interest to you if you build a BASIC! program as an application in a standalone
apk. BASIC! normally keeps programs and data in its base directory (see Working with Files, later in
this manual). The base directory is in public storage space. BASIC! programs also have access to a
private storage area. Your program can create a subdirectory within the SysPath directory and store
private files there. Note that if you uninstall BASIC!, any files in private storage will be deleted.

29.3 Run
Syntax: Run <filename_sexp>{, <data_sexp>}

This command will terminate the running of the current program and then load and run the BASIC!
program named in the filename string expression. The filename is relative to BASIC!’s "source/"
directory. If the filename is "program.bas" and your <pref base drive> is "/sdcard" (the default), then the
file "/sdcard/rfo-basic/source/program.bas" will be executed.

If the filename parameter is omitted, and the currently executing program has a name, then the
program restarts. The program does not have a name if you run from the BASIC! Editor without first
saving the program; in this case Run terminates your program with a syntax error.

The optional data string expression provides for the passing of data to the next program. The passed
data can be accessed in the next program by referencing the special variable, ##$.

Run programs can be chained. A program loaded and run by means of the Run command can also
run another program file. This chain can be a long as needed.

When the last program in a Run chain ends, tapping the BACK key will display the original program in
the BASIC! Editor.

When a program ends with an error, the Editor tries to highlight the line where the error occurred. If the
program with the error was started by a Run command, the Editor does not have that program loaded.
Any highlighting that may be displayed is meaningless.

Page 130 of 209 Basic! Language Reference 2023-09-05
29.4 Version$
Syntax: Version$()

Returns the version number of BASIC! as a string.

2023-09-05 Basic! Language Reference Page 131 of 209
30 Program Flow Statements

30.1 Do / Until
Syntax: Do / Until <lexp>

Do
 <statement>
 …
 <statement>
Until <lexp>

The statements between Do and Until will be executed until <lexp> is true. The <statement>s will
always be executed at least once.

Do-Until loops may be nested to any level. Any encountered Until statement will apply to the last
executed DO statement.

You can exit a Do loop without Until or D_U.break. As with For-Next loops, this can create subtle
bugs, and BASIC! can help you find them. If debug is on, and your program is still in a Do loop when it
ends, BASIC! shows a run-time error: "Program ended with DO without UNTIL".

30.1.1 D_U.continue

Syntax: D_U.continue

If this statement is executed within a Do-Until loop, the rest of the current pass of the loop is skipped.
The Until statement executes immediately.

30.1.2 D_U.break

Syntax: D_U.break

If this statement is executed within a Do-Until loop, the rest of the current pass of the loop is skipped
and the loop is terminated. The statement immediately following the Until will be executed.

30.2 For - To - Step / Next
Syntax: For - To - Step / Next

FOR <nvar> = <nexp_1> TO <nexp_2> {STEP <nexp_3>}
 <statement>
 ...
 <statement>
NEXT {<nvar>}

Initially, <nvar> is assigned the value of <nexp_1> and compared to <nexp_2>. {STEP <nexp_3>} is
optional and may be omitted. If omitted then the Step value is 1.

If <nexp_3> is positive then
if <nvar> <= <nexp_2> then

the statements between the For and Next are executed.

If <nexp_3> is negative then
if <nvar> >= <nexp_2> then

the statements between the For and Next are executed.

When the Next statement is executed, <nvar> is incremented or decremented by the Step value and
the test is repeated. The <statement>s will be executed as long as the test is true. Each time, <nvar>

Page 132 of 209 Basic! Language Reference 2023-09-05
is compared to the original value of <nexp_2>; <nexp_2> is not re-evaluated with each Next.

Because the keywords To and Step are in the middle of the line with expressions that may include
variables, it is possible to confuse BASIC!. Remember that the interpreter does not see any spaces
you put between variables and keywords. FOR a TO m is seen as foratom. If there is any possibility
of confusion, use parentheses to tell BASIC! that a name is a variable:

FOR WinTop TO WinBot % ERROR: interpreted as "FOR win TO ptowinbot"
FOR (WinTop) TO WinBot % interpreted as intended

For-Next loops can be nested to any level. When For-Next loops are nested, any executed Next
statement will apply to the currently executing For statement. This is true no matter what the <nvar>
coded with the Next is. For all practical purposes, the <nvar> coded with the Next should be
considered to be nothing more than a comment.

It is possible to exit a For loop without Next or F_N.break. However, this can create subtle logic errors
that are hard to debug. If you set debug mode (see the Debug.on command), then BASIC! can help
you find these bugs. When your program ends and debug is on, if your program entered a For loop
and did not leave it cleanly, BASIC! shows a run-time error: "Program ended with FOR without NEXT".

30.2.1 F_N.continue

Syntax: F_N.continue

If this statement is executed within a For-Next loop, the rest of the current pass of the loop is skipped.
The Next statement executes immediately.

30.2.2 F_N.break

Syntax: F_N.break

If this statement is executed within a For-Next loop, the rest of the current pass of the loop is skipped
and the loop is terminated. The statement immediately following the Next will be executed.

30.3 If / Then / Else / Elseif / Endif
Syntax: If / Then / Else / Elseif / Endif

The If commands provide for the conditional execution of blocks of statements. (Note: the braces { }
are not part of the command syntax. They are used only to show parts that are optional.)

IF <condition> { THEN }
 <statement>
 <statement>
...
 <statement>
{ ELSEIF<condition> { THEN }
 <statement>
 <statement>
...
 <statement> }
{ ELSE
 <statement>
 <statement>
...
 <statement> }
ENDIF

If commands may be nested to any depth. That is, any <statement> in a block may be a full If
command with all of its own <statement> blocks.

2023-09-05 Basic! Language Reference Page 133 of 209
See the Sample Program file, F04_if_else.bas, for working examples of the If command.

30.4 If / Then / Else
Syntax: If / Then / Else

If your conditional block(s) contain(s) only one statement, you may use a simpler form of the If
command, all one line:

IF <condition> THEN <statement> { ELSE <statement> }

In this form, Then is required, and there is no ElseIf or EndIf.

This form does not nest: neither <statement> may be an If command.

Because the single statements are not treated as blocks, this is the preferred form if either of the
embedded statements is a Break, Continue, or GoTo.

You may replace either <statement> with multiple statements separated by colon (":") characters. If
you do this, the set of multiple statements is treated as a block, and the single-line If/Then/Else
becomes an If/Then/Else/Endif. These two lines are exactly equivalent:

IF (x > y) THEN x = y : PRINT a$ ELSE y = x : PRINT b$
IF (x > y) : x = y : PRINT a$: ELSE : y = x : PRINT b$: ENDIF

Please note, if you wish to use colon-separated statements in this form of If/Then/Else, then you must
be careful to put spaces around the keywords Then and Else. Spaces are not significant to the BASIC!
interpreter, but they are needed by the preprocessor that converts the single-line If with multi-statement
blocks into a multi-line If with an EndIf.

30.5 Switch Commands
The Switch commands may be used to replace nested if-then-else operations.

SW.BEGIN a
SW.CASE 1
 <statement1>
 …
 <statement2>
 SW.BREAK

SW.CASE 2, 4
 <statement3>
 …
 <statement4>
 SW.BREAK

SW.CASE < 0
 <statement5>
 …
 <statement6>
 SW.BREAK

SW.DEFAULT
 <statement7>

SW.END

The value of the argument of Sw.begin is compared to the argument of each Sw.case in order. If any
Sw.case matches the Sw.begin, the statements following the matching Sw.case is executed; if no

Page 134 of 209 Basic! Language Reference 2023-09-05
Sw.case matches, the statements after Sw.default are executed. Once BASIC! starts to execute the
statements of a Sw.case or Sw.default, it continues execution until it finds a Sw.break or the Sw.end,
ignoring any other Sw.case or Sw.default it may encounter. Sw.break causes a jump to the Sw.end.

In the example:

 if the value of a is 1, then <statement1> through <statement2> execute

 if the value of a is 2 or 4, then <statement3> through <statement4> execute

 if the value of a is less than 0, then <statement5> through <statement6> execute

 if a has any other value (3, or more than 4) then <statement7> executes.

A Sw.begin must be followed by a Sw.end, and all of the Sw.case and the Sw.default (if there is one)
for the same switch must appear between them. A set of switch commands is treated as a single unit,
just as if BASIC! were compiled.

30.5.1 Nesting Switch Operations

Switches can be nested. The block of statements following a Sw.case or Sw.default may include a full
set of switch commands. The nested switch begins with another Sw.begin and ends with another
Sw.end, with its own Sw.case and Sw.default statements in between. You can nest other switches
inside nested switches, for as many levels as you want.

If you prefer, you may put the inner switch operations in a labeled Gosub routine or a User-defined
Function, and put the Gosub or function call in the Sw.case or Sw.default block. This may make your
code easier to read, and it will also make the initial scan of the switch a little faster.

30.5.2 Sw.begin

Syntax: Sw.begin <exp>

Begins a switch operation. BASIC! scans forward until it reaches a Sw.end, locating all Sw.case,
Sw.break, and Sw.default statements between the Sw.begin and the Sw.end.

The numeric or string expression <exp> is evaluated. Its value is then compared to the expression(s)
in each Sw.case statement, in order. BASIC! uses to result of the compares to decide which statement
to execute next.

IF this condition is met: THEN jump to the statement
One or more Sw.Case statement(s) match the Sw.Begin after the first matching Sw.case.
No Sw.Case matches AND a Sw.default exists after the Sw.default.
No Sw.Case matches AND no Sw.default exists after the Sw.end.

There are two forms of Sw.case. You may freely mix both forms. Each form defines what it means to
"match" Sw.begin. Only the first matching Sw.case has any effect.

30.5.3 Sw.case

Syntax: Sw.case <exp>, ...

or

Syntax: Sw.case <op><exp>

The first form of Sw.case provides a list of one or more expressions. A Sw.case of this form matches
the Sw.begin if the value of at least one of the expressions exactly equals the value of the Sw.begin
parameter. The type of the Sw.begin and Sw.case parameter(s), numeric or string, must match.

2023-09-05 Basic! Language Reference Page 135 of 209
The second form can take only one expression <exp>, but it lets you specify a different logical operator
<op>. You may use any of these comparison operators:

 < <= > >= <>

For example:
SW.BEGIN a
SW.CASE < b % This SW.CASE matches if a < b

The expression <exp> may be arbitrarily complex. The whole expression is evaluated as if written:
<value of Sw.begin argument> <op> <exp>

Operator precedence is applied as usual.

30.5.4 Sw.break

Syntax: Sw.break

This statement may be used to terminate the block of statements that follows Sw.case or Sw.default.
The Sw.break causes BASIC! to jump forward to the Sw.end statement, skipping everything between.

If no Sw.break is present in a particular Sw.case then subsequent Sw.cases will be executed until a
Sw.break or Sw.end is encountered.

30.5.5 Sw.default

Syntax: Sw.default

This statements acts like a Sw.case that matches any value. If any Sw.case matches the Sw.begin
value, then the Sw.default is ignored, even if the matching Sw.case is after the Sw.default.

A switch is not required to have a Sw.default, but it must not have more than one. A second
Sw.default in the same switch is a syntax error.

30.5.6 Sw.end

Syntax: Sw.end

The Sw.end terminates a switch operation. Sw.end must eventually follow a Sw.begin.

30.6 While / Repeat
Syntax: While <lexp> / Repeat

While <lexp>
 <statement>
 …
 <statement>
Repeat

The <statement>s between the While and Repeat will be executed as long as <lexp> evaluates as
true. The <statements>s will not be executed at all if <lexp> starts off false.

While-Repeat loops may be nested to any level. When While-Repeat are nested, any executed
Repeat statement will apply to inner most While loop.

30.6.1 W_R.continue

Syntax: W_R.continue

Page 136 of 209 Basic! Language Reference 2023-09-05
If this statement is executed within a While-Repeat loop, the rest of the current pass of the loop is
skipped. The Repeat statement executes immediately.

You can exit a While loop without Repeat or W_R.break. As with For-Next loops, this can create
subtle bugs, and BASIC! can help you find them. If debug is on, and your program is still in a While
loop when it ends, BASIC! shows a run-time error: "Program ended with WHILE without REPEAT".

30.6.2 W_R.break

Syntax: W_R.break

If this statement is executed within a While-Repeat loop, the rest of the current pass of the loop is
skipped and the loop is terminated. The statement immediately following the Repeat will be executed.

30.7 Labels, GoTo, GoSub, and Return
A GoTo statement is a one-way jump to another place in your program, identified by a Label. The
program goes to the Label and continues execution there.

A GoSub is similar, except that the Label is the beginning of a "Subroutine". The program goes to the
Label, and executes there until it reaches a Return statement. Then it "returns", going back to where it
came from: the line after the GoSub statement.

Extensive use of the GoTo command in your program should be generally avoided. It can make code
hard to read and harder to debug. Instead, you should use structured elements like Do…Until,
While…Repeat, etc. in conjunction with the Break and Continue statements.

It is especially serious to use GoTo commands inside an If…Else…Endif, For…Next, or other
structured block, jumping to code outside of the block. Doing this consumes system resources and
may corrupt BASIC!’s internal data structures. This practice may lead your program to a run-time error:

Stack overflow. See manual about use of GOTO.

30.7.1 Label

A label is a word followed by the colon ":" character. Label names follow the same conventions as
variable names, except that a label must not start with a BASIC! command keyword.

You may put a label on a line with other commands. Use two colons: one to signify that the word is a
label, and a second to separate the label from the other command(s) on the line.

Here: : If ++a < 5 Then GoTo Here Else Print a

This program prints 5.0 and then stops.

The colon signifies that the word is a label, but it is not part of the label. Use the colon where the label
is defined. Do not use it in the GoTo or GoSub that jumps to the label.

For example:

This_is_a_Label:

@Label#3:

Loop: % The command "GoTo Loop" jumps to this line
 <statement>
 …
 <statement>
GoTo Loop

2023-09-05 Basic! Language Reference Page 137 of 209
30.7.2 GoTo

Syntax: GoTo <label>

or

Syntax: GoTo <index_nexp>, <label>...

For the first form of the GoTo statement, the next statement to be executed is the statement following
<label>.

The second form is called a "computed GoTo". The index expression is evaluated, rounded to the
nearest integer, and used as an index into the list of labels. The program jumps to the statement after
the indexed label. If the index does not select any label, the program continues at the statement after
the GoTo.

Example:

d = Floor(6 * Rnd() + 1) % roll a six-sided die
GoTo d, Side1, Side2, Side3, Side4, Side5, Side6
Print "Welcome back!"
End

Side1:
 <statements>
.
.
.
Side6:
 <statements>

30.7.3 GoSub / Return

Syntax: GoSub <label> / Return

or

Syntax: GoSub <index_nexp>, <label>...

For the first form of the GoSub statement, the next statement to be executed is the statement following
<label>.

The statements following the line beginning with <label> will continue to be executed until a Return
statement is encountered. Execution will then continue at the statement following the GoSub
statement.

Example:

Message$ = "Have a good day"
GoSub xPrint
Print "Thank you"
<statement>
…
<statement>
End

xPrint:
 Print Message$
Return

This will print:

Page 138 of 209 Basic! Language Reference 2023-09-05
Have a good day
Thank you

The second form is called a "computed GoSub". The index expression is evaluated, rounded to the
nearest integer, and used as an index into the list of labels. The program jumps to the statement after
the indexed label. When the next Return instruction executes, the program returns to the statement
after this GoSub.

If the index does not select any label, the program continues to the statement after the GoSub. No
subroutine is executed, and no Return statement is expected.

Example:

d = Floor(6 * Rnd() + 1) % roll a six-sided die
GoSub d, Side1, Side2, Side3, Side4, Side5, Side6
Print "Welcome back!"
End

Side1:
 <subroutine for side 1>
Return
.
.
.
Side6:
 <subroutine for side 6>
Return

30.8 End
Syntax: End {<msg_sexp>}

Prints a message and stops the execution of the program. The default message is "END". You can
use the optional <msg_sexp> argument to specify a different message. The empty string ("") prints
nothing, not even a blank line. The End statement always stops execution, even if the statement has
an error.

End statements may be placed anywhere in the program.

30.9 Exit
Syntax: Exit

Causes BASIC! to stop running and exit to the Android home screen.

2023-09-05 Basic! Language Reference Page 139 of 209
31 Queues
A Queue is like the line that forms at your bank. When you arrive, you get in the back of the line or
queue. When a teller becomes available the person at the head of the line or queue is removed from
the queue to be serviced by the teller. The whole line moves forward by one person. Eventually, you
get to the head of the line and will be serviced by the next available teller. A queue is something like a
stack except the processing order is First In First Out (FIFO) rather than LIFO.

Using our customer order processing analogy, you could create a queue of order bundles for the order
processing department. New order bundles would be placed at the end of the queue. The top-of-the-
queue bundle would be removed by the order processing department when it was ready to service a
new order.

There are no special commands in BASIC! for Queue operations. If you want to make a queue, create
a list.

Use List.add to add new elements to the end of the queue.

Use List.get to get the element at the top of the queue and use List.remove to remove that top of
queue element. You should, of course, use List.size before using List.get to ensure that there is a
queued element remaining.

Page 140 of 209 Basic! Language Reference 2023-09-05
32 Random Number Generator

32.1 Randomize
Syntax: Randomize({<nexp>})

Creates a pseudo-random number generator for use with the Rnd() function. The optional seed
parameter <nexp> initializes the generator. Omitting the parameter is the same as specifying 0. If you
call Rnd() without first calling Randomize(), it is the same as if you had executed Randomize(0).

A non-zero seed initializes a predictable series of pseudo-random numbers. That is, for a given non-
zero seed value, subsequent Rnd() calls will always return the same series of values.

If the seed is 0, the sequence of numbers from Rnd() is unpredictable and not reproducible. However,
repeated Randomize(0) calls do not produce "more random" sequences.

The Randomize() function always returns zero.

32.2 Rnd
Syntax: Rnd()

Returns a random number generated by the pseudorandom number generator. If a Randomize(n) has
not been previously executed then a new random generator will be created using Randomize(0).

The random number will be greater than or equal to zero and less than one. (0 <= n < 1).

d = Floor(6 * Rnd() + 1) % roll a six-sided die

2023-09-05 Basic! Language Reference Page 141 of 209
33 Read Commands

33.1 Read.data
Syntax: Read.data <number>|<string>{,<number>|<string>...,<number>|<string>}

Provides the data value(s) to be read with Read.next.

Read.data statements may appear anywhere in the program. You may have as many Read.data
statements as you need.

Example:
Read.data 1,2,3,"a","b","c"

Read.data is equivalent to the DATA statement in Dartmouth Basic.

33.2 Read.from
Syntax: Read.from <nexp>

Sets the internal NEXT pointer to the value of the expression. This command can be set to randomly
access the data.

The command Read.from 1 is equivalent to the RESTORE command in Dartmouth Basic.

33.3 Read.next
Syntax: Read.next <var>, ...

Reads the data pointed to by the internal NEXT pointer into the next variables. The NEXT pointer is
initialized to "1" and is incremented by one each time a new value is read. Data values are read in the
sequence in which they appeared in the program Read.data statement(s).

The data type (number or string) of the variable must match the data type pointed by the NEXT pointer.

Example:

Read.next a,b,c,c$
Read.next d$,e$

Read.next is equivalent to the READ statement in Dartmouth Basic.

Page 142 of 209 Basic! Language Reference 2023-09-05
34 Ringer Commands
Android devices support three ringtone modes:

Value: Meaning: Behavior
0 Silent Ringer is silent and does not vibrate
1 Vibrate Ringer is silent but vibrates
2 Normal Ringer may be audible and may vibrate

"Normal" behavior depends on other device settings set by the user.

Ringer volume is an integer number from zero to a device-dependent maximum. If the volume is zero
the ringer is silent.

NOTE: These are system settings. Any change you make persists after your program ends. You may
want to record the original settings and change them back when the program exits.

34.1 Ringer.get.mode
Syntax: Ringer.get.mode <nvar>

Returns the current ringtone mode in the numeric variable.

34.2 Ringer.get.volume
Syntax: Ringer.get.volume <vol_nvar> { , <max_nvar> }

Returns the ringer volume level in the numeric variable. Returns the maximum volume settting in
<max_nvar>, if <max_nvar> is present.

34.3 Ringer.set.mode
Syntax: Ringer.set.mode <nexp>

Changes the ringtone mode to the specified value. If the value is not a valid mode, the device mode is
not changed.

34.4 Ringer.set.volume
Syntax: Ringer.set.volume <nexp>

Changes the ringer volume to the specified value. If the value is less than zero, volume is set to zero.
If the value is greater than the device-specific maximum, the volume is set to the maximum level.

2023-09-05 Basic! Language Reference Page 143 of 209
35 Sensors
Android devices can have several types of Sensors. Currently, Android's pre-defined Sensors are:

Name of Sensor Type Notes
Accelerometer 1 As of API 3 (Cupcake)
Magnetic Field 2 As of API 3
Orientation 3 As of API 3, deprecated API 8
Gyroscope 4 As of API 3
Light 5 As of API 3
Pressure 6 As of API 3
Temperature 7 As of API 3, deprecated API 14
Proximity 8 As of API 3
Gravity 9 As of API 9 (Gingerbread)
Linear Acceleration 10 As of API 9
Rotation Vector 11 As of API 9
Relative Humidity 12 As of API 14 (Ice Cream Sandwich)
Ambient Temperature 13 As of API 14
Uncalibrated Magnetic Field 14 As of API 18 (Jellybean MR2)
Game Rotation Vector 15 As of API 18
Uncalibrated Gyroscope 16 As of API 18
Significant Motion 17 As of API 18
Step Detector 18 As of API 19 (KitKat)
Step Counter 19 As of API 19
Geomagnetic Rotation Vector 20 As of API 19

Some details about (most) of these sensors can be found at
(http://developer.android.com/reference/android/hardware/SensorEvent.html) web page.

Not all Android devices have all of these Sensors. Some Android devices may have none of these
sensors. The BASIC! command, sensors.list, can be used to provide an inventory of the sensors
available on a particular device.

Some newer devices may have sensors that are not currently supported by BASIC! Those sensors will
be reported as "Unknown, Type = NN" where NN is the sensor type number.

35.1 Sensors.close
Syntax: Sensors.close

Closes the previously opened sensors. The sensors' hardware will be turned off preventing battery
drain. Sensors are automatically closed when the program run is stopped via the BACK key or Menu-
>Stop.

35.2 Sensors.list
Syntax: Sensors.list <sensor_array$[]>

Writes information about the sensors available on the Android device into the <sensor_array$[]>
parameter. If the array exists, it is overwritten. Otherwise a new array is created. The result is always
a one-dimensional array.

The array elements contain the names and types of the available sensors. For example, one element
may be "Gyroscope, Type = 4". The following program snippet prints the elements of the sensor list.

SENSORS.LIST sensorarray$[]
ARRAY.LENGTH size, sensorarray$[]
FOR index = 1 TO size

http://developer.android.com/reference/android/hardware/SensorEvent.html

Page 144 of 209 Basic! Language Reference 2023-09-05
 PRINT sensorarray$[index]
NEXT index
END

35.3 Sensors.open
Syntax: Sensors.open <type_nexp>{:<delay_nexp>}{, <type_nexp>{:<delay_nexp>}, ...}

Opens a list of sensors for reading. The parameter list is the type numbers of the sensors to be
opened, followed optionally by a colon (':') and a number (0, 1, 2, or 3) that specifies the delay in
sampling the sensor. 3 is the default (slowest).

This table gives a general idea of what the rate values mean. The delay values are only "suggestions"
to the sensors, which may alter the real delays, and do not apply to all sensors. Faster settings use
more battery.

Value Name Typical Delay Typical Usage
3 Normal 200 ms Default: suitable for screen orientation changes
2 UI 60 ms Rate suitable for the user interface
1 Game 20 ms Rate suitable for game play
0 Fastest 0 ms Sample as fast as possible

Example:

SENSORS.OPEN 1:1, 3 % Monitor the Acceleration sensor at Game rate
% and the Orientation sensor at Normal rate.

This command must be executed before issuing any Sensors.read commands. You should only open
the sensors that you actually want to read. Each sensor opened increases battery drain and the
background CPU usage.

BASIC! uses the colon character to separate multiple commands on a single line. The use of colon in
this command conflicts with that feature, so you must use caution when using both features together.

If you put any colons on a line after this command, the preprocessor always assumes the colons are
part of the command and not command separators. The Sensors.open command must be either on a
line by itself or placed last on a multi-command line.

35.4 Sensors.read
Syntax: Sensors.read sensor_type_nexp, p1_nvar, p2_nvar, p3_nvar

This command returns that latest values from the sensors specified by the "sensor_type" parameters.
The values are returned are placed into the p1, p2 and p3 parameters. The meaning of these
parameters depends upon the sensor being read. Not all sensors return all three parameter values. In
those cases, the unused parameter values will be set to zero. See Android's Sensor Event web page
for the meaning of these parameters.

http://developer.android.com/reference/android/hardware/SensorEvent.html

2023-09-05 Basic! Language Reference Page 145 of 209
36 Socket (TCP/IP) Commands
TCP/IP Sockets provide for the transfer of information from one point on the Internet to another. There
are two genders of TCP/IP Sockets: Servers and Clients. Clients must talk to Servers. Servers must
talk to Clients. Clients cannot talk to Clients. Servers cannot talk to Servers.

Every Client and Server pair have an agreed-upon protocol. This protocol determines who speaks first
and the meaning and sequence of the messages that flow between them.

Most people who use a TCP/IP Socket will use a Client Socket to exchange messages with an existing
Server with a predefined protocol. One simple example of this is the Sample Program file,
f31_socket_time.bas. This program uses a TCP/IP client socket to get the current time from one of
the many time servers in the USA.

A TCP/IP Server can be set up in BASIC!; however, there are difficulties. The capabilities of individual
wireless networks vary. Some wireless networks allow servers. Most do not. Servers can usually be
run on WiFi or Ethernet Local Area Networks (LAN).

If you want to set up a Server, the way most likely to work is to establish the Server inside a LAN. You
will need to provide Port tunneling (forwarding) from the LAN’s external Internal IP to the device’s LAN
IP. You must to be able to program (setup) the LAN router in order to do this.

Clients, whether running inside the Server’s LAN or from the Internet, should connect to the LAN’s
external IP address using the pre-established, tunneled Port. This external or WAN IP can be found
using:

Graburl ip$, "http://icanhazip.com”

This is not the same IP that would be obtained by executing Socket.myIP on the server device.

Note: The specified IPs do not have to be in the numeric form. They can be in the name form.

The Sample Program, f32_tcp_ip_sockets.bas, demonstrates the socket commands for a Server
working in conjunction with a Client. You will need two Android devices to run this program.

36.1 Client Socket (TCP/IP) Commands

36.1.1 Socket.client.close

Syntax: Socket.client.close

Closes an open client side connection.

36.1.2 Socket.client.connect

Syntax: Socket.client.connect <server_sexp>, <port_nexp> { , <wait_lexp> }

Create a Client TCP/IP socket and attempt to connect to the Server whose Host Name or IP Address is
specified by the Server string expression using the Port specified by Port numeric expression.

The optional "wait" parameter determines if this command waits until a connection is made with the
Server. If the parameter is absent or true (non-zero), the command will not return until the connection
has been made or an error is detected. If the Server does not respond, the command should time out
after a couple of minutes, but this is not certain.

If the parameter is false (zero), the command completes immediately. Use Socket.client.status to
determine when the connection is made. If you monitor the socket status, you can set your own time-
out policy. You must use the Socket.client.close command to stop a connection attempt that has not
completed.

Page 146 of 209 Basic! Language Reference 2023-09-05
36.1.3 Socket.client.read.file

Syntax: Socket.client.read.file <file_nexp>

Read file data transmitted by the Server and write it to a file. The <file_nexp> is the file index of a file
opened for write by Byte.open write command. For example:

Byte.open w, fw, "image.jpg"
Socket.client.read.file fw
Byte.close fw

36.1.4 Socket.client.read.line

Syntax: Socket.client.read.line <line_svar>

Read a line from the previously-connected Server and place the line into the line string variable. The
command does not return until the Server sends a line. To avoid an infinite delay waiting for the Server
to send a line, the Socket.client.read.ready command can be repeatedly executed with timeouts.

36.1.5 Socket.client.read.ready

Syntax: Socket.client.read.ready <nvar>

If the previously created Client socket has not received a line for reading by Socket.client.read.line
then set the return variable <nvar> to zero. Otherwise return a non-zero value.

The Socket.client.read.line command does not return until a line has been received from the Server.
This command can be used to allow your program to time out if a line has not been received within a
pre-determined time span. You can be sure that Socket.client.read.line will return with a line of data if
Socket.client.read.ready returns a non-zero value.

36.1.6 Socket.client.server.ip

Syntax: Socket.client.server.ip <svar>

Return the IP of the server that this client is connected to in the string variable.

36.1.7 Socket.client.status

Syntax: Socket.client.status <status_nvar>

Get the current client socket connection status and place the value in the numeric variable
<status_nvar>.

0 = Nothing going on

2 = Connecting

3 = Connected

36.1.8 Socket.client.write.bytes

Syntax: Socket.client.write.bytes <sexp>

Send the string expression, <sexp>, to the previously-connected Server as 8-bit bytes. Each character
of the string is sent as a single byte. The string is not encoded. No end-of-line characters are added
by BASIC!. If you need a CR or LF character, you must make it part of the string. Note that if
Socket.server.read.line is used to receive these bytes, the read.line command will not return until it
receives a LF (10, 0x0A) character.

36.1.9 Socket.client.write.file

Syntax: Socket.client.write.file <file_nexp>

2023-09-05 Basic! Language Reference Page 147 of 209
Transmit a file to the Server. The <file_nexp> is the file index of a file opened for read by Byte.open.
Example:

Byte.open r, fr, "image.jpg"
Socket.client.write.file fr
Byte.close fr

36.1.10 Socket.client.write.line

Syntax: Socket.client.write.line <line_sexp>

Send the string expression <line_sexp> to the previously-connected Server as UTF-16 characters. End
of line characters will be added to the end of the line.

36.2 Server Socket (TCP/IP) Commands

36.2.1 Socket.myIP

Syntax: Socket.myIP <svar>

Returns the IP of the device in string variable <svar>. If the device has no active IP address, the
returned value is the empty string "".

If the device is on a WiFi or Ethernet LAN then the IP returned is the device’s LAN IP.

Note: The external or WAN IP can be found using:

Graburl ip$, "http://icanhazip.com”

36.2.2 Socket.myIP

Syntax: Socket.myIP <array$[]>{, <nvar>}

Returns all active IP addresses of the device in the string array <array$[]>. If you provide the optional
address-count variable <nvar>, it is set to the number of active IP addresses.

If the device has no active IP address, the array has a single element, the empty string "", and the
address-count in <nvar> is 0. In this case only, the address-count is not the same as the array length.

Most devices usually have zero or one IP address. It is possible to have more than one. For example,
after enabling a WiFi connection, there may still be an active cellular data connection. Normally this
connection shuts down after a short time, but in some cases it may remain open.

36.2.3 Socket.server.client.ip

Syntax: Socket.server.client.ip <nvar>

Return the IP of the Client currently connected to the Server.

36.2.4 Socket.server.close

Syntax: Socket.server.close

Close the previously created Server. Any currently connected client will be disconnected.

36.2.5 Socket.server.connect

Syntax: Socket.server.connect {<wait_lexp>}

Direct the previously created Server to accept a connection from the next client in the queue.

The optional "wait" parameter determines if the command waits until a connection is made with a client.

Page 148 of 209 Basic! Language Reference 2023-09-05
If the parameter is absent or true (non-zero), the command waits for the connection. If the parameter is
false (zero), the command completes immediately. Use Socket.server.status to determine when the
connection is made.

In general, it is safer to set the parameter to false (don't wait) and explicitly monitor the connection's
status, since it can avoid a problem if the program exits with no connection made. You must use the
Socket.server.close command to stop a connection attempt that has not completed.

36.2.6 Socket.server.create

Syntax: Socket.server.create <port_nexp>

Establish a Server that will listen to the Port specified by the numeric expression, <port_nexp>.

36.2.7 Socket.server.disconnect

Syntax: Socket.server.disconnect

Close the connection with the previously-connected Client. A new Socket.server.connect can then be
executed to connect to the next client in the queue.

36.2.8 Socket.server.read.file

Syntax: Socket.server.read.file <file_nexp>

Read file data transmitted by the Client and write it to a file. The <file_nexp> is the file index of a file
opened for write by Byte.open. Example:

Byte.open w, fw, "image.jpg"
Socket.server.read.file fw
Byte.close fw

36.2.9 Socket.server.read.line

Syntax: Socket.server.read.line <svar>

Read a line sent from the previously-connected Client and place the line into the string variable <svar>.
The command does not return until the Client sends a line. To avoid an infinite delay waiting for the
Client to send a line, the Socket.server.read.ready command can be repeatedly executed with
timeouts.

36.2.10 Socket.server.read.ready

Syntax: Socket.server.read.ready <nvar>

If the previously-connected Client socket has not sent a line for reading by Socket.server.read.line
then set the return variable <nvar> to zero. Otherwise return a non-zero value.

The Socket.server.read.line command does not return until a line has been received from the Client.
This command can be used to allow your program to time out if a line has not been received within a
pre-determined time span. You can be sure that Socket.server.read.line will return with a line of data
if returns a non-zero value.

36.2.11 Socket.server.status

Syntax: Socket.server.status <status_nvar>

Get the current server socket connection status and place the value in the numeric variable
<status_nvar>.

- 1 = Server socket not created

 0 = Nothing going on

2023-09-05 Basic! Language Reference Page 149 of 209
 1 = Listening

 3 = Connected

36.2.12 Socket.server.write.bytes

Syntax: Socket.server.write.bytes <sexp>

Send the string expression, <sexp>, to the previously-connected Client as 8-bit bytes. Each character
of the string is sent as a single byte. The string is not encoded. No end of line characters are added by
BASIC!. If you need a CR or LF character, you must make it part of the string. Note that if
Socket.client.read.line is used to receive these bytes, the read.line command will not return until it
receives a LF (10, 0x0A) character.

36.2.13 Socket.server.write.file

Syntax: Socket.server.write.file <file_nexp>

Transmit a file to the Client. The <file_nexp> is the file index of a file opened for read by Byte.open.
Example:

Byte.open r, fr, "image.jpg"
Socket.server.write.file fr
Byte.close fr

36.2.14 Socket.server.write.line

Syntax: Socket.server.write.line <line_sexp>

Send the string expression <line_sexp> to the previously-connected Client as UTF-16 characters. End
of line characters will be added to the end of the line.

Page 150 of 209 Basic! Language Reference 2023-09-05
37 SoundPool Commands
A SoundPool is a collection of short sound bites that are preloaded and ready for instantaneous play.
SoundPool sound bites can be played while other sounds are playing, either while other sound bites
are playing or over a currently playing sound file being played my means of Audio.play. In a game, the
Audio.play file would be the background music while the SoundPool sound bites would be the game
sounds (Bang, Pow, Screech, etc).

A SoundPool is opened using the SoundPool.open command. After the SoundPool is opened, sound
bites will be loaded into memory from files using the SoundPool.load command. Loaded sound bites
can be played over and over again using the SoundPool.play command.

A playing sound is called a sound stream. Individual sound streams can be paused
(SoundPool.pause), individually or as a group, resumed (SoundPool.resume) and stopped
(SoundPool.stop). Other stream parameters (priority, volume and rate) can be changed on the fly.

The SoundPool.release command closes the SoundPool. A new SoundPool can then be opened for a
different phase of the game. SoundPool.release is automatically called when the program run is
terminated.

37.1 SoundPool.load
Syntax: SoundPool.load <soundID_nvar>, <file_path_sexp>

The file specified in <file_path_sexp> is loaded. Its sound ID is returned in <soundID_nvar>. The
sound ID is used to play the sound and also to unload the sound. The sound ID will be returned as
zero if the file was not loaded for some reason.

The default file path is "sdcard/rfo-basic/data/"

Note: It can take a few hundred milliseconds for the sound to be loaded. Insert a "Pause 500"
statement after the load if you want to play the sound immediately following the load command.

37.2 SoundPool.open
Syntax: SoundPool.open <MaxStreams_nexp>

The MaxStreams expression specifies the number of Soundpool streams that can be played at once. If
the number of streams to be played exceeds this value, the lowest priority streams will be terminated.

Note: A stream playing via audio.play is not counted as a Soundpool stream.

37.3 SoundPool.pause
Syntax: SoundPool.pause <streamID_nexp>

Pauses the playing of the specified stream. If the stream ID is zero, all streams will be paused.

37.4 SoundPool.play
Syntax: SoundPool.play <streamID_nvar>, <soundID_nexp>, <rightVolume_nexp>,

<leftVolume_nexp>, <priority_nexp>, <loop_nexp>, <rate_nexp>

Starts the specified sound ID playing.

The stream ID is returned in <streamID_nvar>. If the stream was not started, the value returned will be
zero. The stream ID is used to pause, resume and stop the stream. It is also used in the stream
modification commands (Soundpool.setrate, Soundpool.setvolume, Soundpool.setpriority and
Soundpool.setloop).

2023-09-05 Basic! Language Reference Page 151 of 209
The left and right volume values must be in the range of 0 to 0.99 with zero being silent.

The priority is a positive value or zero. The lowest priority is zero.

The loop value of -1 will loop the playing stream forever. Values other than -1 specify the number of
times the stream will be replayed. A value of 1 will play the stream twice.

The rate value changes the playback rate of the playing stream. The normal rate is 1. The minimum
rate (slow) is 0.5. The maximum rate (fast) is 1.85.

37.5 SoundPool.release
Syntax: SoundPool.release

Closes the SoundPool and releases all resources. Soundpool.open can be called to open a new
SoundPool.

37.6 SoundPool.resume
Syntax: SoundPool.resume <streamID_nexp>

Resumes the playing of the specified stream. If the stream ID is zero, all streams will be resumed.

37.7 SoundPool.setPriority
Syntax: SoundPool.setPriority <streamID_nexp>, <priority_nexp>

Changes the priority of a playing stream.

The lowest priority is zero.

37.8 SoundPool.setRate
Syntax: SoundPool.setRate <streamID_nexp>, <rate_nexp>

Changes the playback rate of the playing stream.

The normal rate is 1. The minimum rate (slow) is 0.5. The maximum rate (fast) is 1.85.

37.9 SoundPool.setVolume
Syntax: SoundPool.setVolume <streamID_nexp>, <leftVolume_nexp>, <rightVolume_nexp>

Changes the volume of a playing stream.

The left and right volume values must be in the range of 0 to 0.99 with zero being silent.

37.10 SoundPool.stop
Syntax: SoundPool.stop <streamID_nexp>

Stops the playing of the specified stream.

37.11 SoundPool.unload
Syntax: SoundPool.unload <soundID_nexp>

The specified loaded sound is unloaded.

Page 152 of 209 Basic! Language Reference 2023-09-05
38 Speech Conversion

38.1 Text To Speech
Your program can synthesize speech from text, either for immediate playback with the TTS.speak
command or to create a sound file with TTS.speak.toFile.

Your device may come with the text-to-speech engine already enabled and configured, or you may
need to set it up yourself in the Android Settings application. The details vary between different devices
and versions of Android. Typically, the menu navigation looks like one of these:

Settings  Voice input & output  Text-to-speech settings
Settings  Language & input  Text-to-speech output

Unless you set an output language in the text-to-speech settings, the speech generated will be spoken
in the current default language of the device. The menu path for setting the default language usually
looks like one of these:

Settings  Language and keyboard  Select language
Settings  Language & input  Language

Most speech engines limit the number of characters they are able to speak. The limit is not the same
for all devices or all speech engines, but it is typically around 4000 characters. If you exceed the limit,
most engines fail silently: you don’t get an error message, but you don’t get any speech output, either.

38.1.1 TTS.init

Syntax: TTS.init

This command must be executed before speaking.

38.1.2 TTS.speak

Syntax: TTS.speak <sexp> {, <wait_lexp>}

Speaks the string expression. The statement does not return until the string has been fully spoken,
unless the optional "wait" parameter is present and evaluates to false (numeric 0). Spoken expressions
cannot overlap. A second TTS.speak (or a TTS.speak.toFile) will wait for the speech from an earlier
TTSts.speak to finish, even if the "wait" flag was false.

38.1.3 TTS.speak.toFile

Syntax: TTS.speak.toFile <sexp> {, <path_sexp>}

Converts the string expression to speech and writes it into a wav file. You can specify the name and
location of the file with the optional "path" parameter. The default path is "<pref base
drive>/rfo-basic/data/tts.wav". The statement does not return until the speech synthesis is complete,
but there is no guarantee the file-write is finished. If a previous TTS.speak is still speaking, this
statement will not start until that speech completes.

38.1.4 TTS.stop

Syntax: TTS.stop

Waits for any outstanding speech to finish, then releases Android's text-to-speech engine. Following
TTS.stop, if you want to run TTS.speak or TTS.speak.toFile again, you will have to run TTS.init
again.

2023-09-05 Basic! Language Reference Page 153 of 209
38.2 Speech To Text (Voice Recognition)
The Voice Recognition function on Android uses Google Servers to perform the recognition. This
means that you must be connected to the Internet and logged into your Google account for this feature
to work.

There are two commands for Speech to Text: STT.listen and STT.results.

STT.listen starts the voice recognition process with a dialog box. STT.results reports the interpretation
of the voice with a list of strings.

The Speech to Text procedures are different for Graphics Mode, HTML mode and simple Console
Output mode.

38.2.1 STT.listen

Syntax: STT.listen {<prompt_sexp>}

Start the voice recognize process by displaying a "Speak Now" dialog box. The optional prompt string
expression <prompt_sexp> sets the dialog box’s prompt. If you do not provide the prompt parameter,
the default prompt "BASIC! Speech To Text" is used.

Begin speaking when the dialog box appers.

The recognition will stop when there is a pause in the speaking.

STT.results should be executed next.

Note: STT.listen is not to be used in HTML mode.

38.2.2 STT.results

Syntax: STT.results <string_list_ptr_nexp>

The command must not be executed until after a STT.listen is executed (unless in HTML mode).

The recognizer returns several variations of what it thinks it heard as a list of strings. The first string in
the list is the best guess.

The strings are written into the list that <string_list_ptr_nexp> points to. The previous contents of the
list are discarded. If the pointer does not specify a valid string list, and the expression is a numeric
variable, a new list is created and the variable is set to point to the new list.

38.2.2.1 Console Mode

The following code illustrates the command in Output Console (not HTML mode and not Graphics
mode):

PRINT "Starting Recognizer"
STT.LISTEN
STT.RESULTS theList
LIST.SIZE theList, theSize
FOR k = 1 TO theSize
 LIST.GET theList, k, theText$
 PRINT theText$
NEXT k
END

38.2.2.2 Graphics Mode

This command sequence is to be used in graphics mode. Graphics mode exists after Gr.open and
before Gr.close. (Note: Graphics mode is temporarily exited after Gr.front 0. Use the Console Mode if

Page 154 of 209 Basic! Language Reference 2023-09-05
you have called Gr.front 0).

The primary difference is that Gr.render must be called after STT.listen and before STT.results.

PRINT "Starting Recognizer"
STT.LISTEN
GR.RENDER
STT.RESULTS theList
LIST.SIZE theList, theSize
FOR k =1 TO theSize
 LIST.GET theList, k, theText$
 PRINT theText$
NEXT k
END

38.2.2.3 HTML Mode

This command sequence is used while in HTML mode. HTML mode exists after HTML.open and
before HTML.close.

The primary difference is that the STT.listen command is not used in HTML mode. The STT.listen
function is performed by means of an HTML datalink sending back the string "STT". The sending of
"STT" by means of the datalink causes the Speak Now dialog box to be displayed.

When the datalink "STT" string is received by the BASIC! program, the STT.results command can be
executed normally as it will contain the recognized text.

The sample file, f37_html_demo.bas, along with the associated html file, htmlDemo1.html (located in
"rfo-basic/data/") demonstrates the use of voice recognition in HTML mode.

2023-09-05 Basic! Language Reference Page 155 of 209
39 Sql Commands
The Android operating system provides the ability to create, maintain and access SQLite databases.
SQLite implements a self-contained, serverless, zero-configuration, transactional SQL database
engine. SQLite is the most widely deployed SQL database engine in the world. The full details about
SQLite can be found at the SQLite Home Page (http://www.sqlite.org/) .

An excellent online tutorial on SQL can be found at www.w3schools.com
(http://www.w3schools.com/sql/default.asp).

Database files will be created on the base drive (usually the SD card) in the directory, "<pref base
drive>/rfo-basic/databases/ ".

39.1 Sql.close
Syntax: Sql.close <DB_pointer_nvar>

Closes a previously opened database. <DB_pointer_nvar> will be set to zero. The variable may then
be reused in another sql.open command. You should always close an opened database when you are
done with it. Not closing a database can reduce the amount of memory available on your Android
device.

39.2 Sql.delete
Syntax: Sql.delete <DB_pointer_nvar>, <table_name_sexp>{,<where_sexp>{,<count_nvar>} }

From the named table of a previously opened database, delete rows selected by the conditions
established by the Where string expression. The Count variable reports the number of rows deleted.

The formation of the Where string is exactly the same as described in the Sql.query command. Both
Where and Count are optional. If the Where string is omitted all rows are deleted, and the Count
variable must be omitted, too.

39.3 Sql.drop_table
Syntax: Sql.drop_table <DB_pointer_nvar>, <table_name_sexp>

The table named <table_name_sexp> in the opened database pointed to by <DB_pointer_nvar> will be
dropped from the database if the table exists.

39.4 Sql.exec
Syntax: Sql.exec <DB_pointer_nvar>, <command_sexp>

Execute ANY non-query SQL command string ("CREATE TABLE", "DELETE", "INSERT", etc.) using a
previously opened database.

39.5 Sql.insert
Syntax: Sql.insert <DB_pointer_nvar>, <table_name_sexp>, C1$, V1$, C2$, V2$, ..., CN$, VN$

Inserts a new row of data columns and values into a table in a previously opened database.

The <table_name_sexp> is the name of the table into which the data is to be inserted. All newly
inserted rows are inserted after the last, existing row of the table.

C1$, V1$, C2$, V2$, ..., CN$, VN$: The column name and value pairs for the new row. These
parameters must be in pairs. The column names must match the column names used to create the
table. Note that the values are all strings. When you need a numeric value for a column, use the

http://www.w3schools.com/sql/default.asp
http://www.sqlite.org/
http://www.sqlite.org/
http://www.sqlite.org/mostdeployed.html
http://www.sqlite.org/transactional.html
http://www.sqlite.org/zeroconf.html
http://www.sqlite.org/serverless.html
http://www.sqlite.org/selfcontained.html

Page 156 of 209 Basic! Language Reference 2023-09-05
BASIC! STR$(n) to convert the number into a string. You can also use the BASIC! FORMAT$(pattern$,
N) to create a formatted number for a value. (The Values-as-strings requirement is a BASIC! SQL
Interface requirement, not a SQLite requirement. While SQLite, itself, stores all values as strings, it
provides transparent conversions to other data types. I have chosen not to complicate the interface
with access to these SQLite conversions since BASIC! provides its own conversion capabilities.)

39.6 Sql.new_table
Syntax: Sql.new_table <DB_pointer_nvar>, <table_name_sexp>, C1$, C2$, ...,CN$

A single database may contain many tables. A table is made of rows of data. A row of data consists of
columns of values. Each value column has a column name associated with it.

This command creates a new table with the name <table_name_sexp> in the referenced opened
database. The column names for that table are defined by the following: C1$, C2$, ..., CN$. At least
one column name is required. You may create as many column names as you need.

BASIC! always adds a Row Index Column named "_id" to every table. The value in this Row Index
Column is automatically incremented by one for each new row inserted. This gives each row in the
table a unique identifier. This identifier can be used to connect information in one table to another
table. For example, the _id value for customer information in a customer table can be used to link
specific orders to specific customers in an outstanding order database.

39.7 Sql.next
Syntax: Sql.next <done_lvar>, <cursor_nvar>{, <cv_svars>}

Using the Cursor generated by a previous Query command (Sql.query or Sql.raw_query), step to the
next row of data returned by the Query and retrieve the data.

<done_lvar> is a Boolean variable that signals when the last row of the Query data has been read.

<cursor_nvar> is a numeric variable that holds the Cursor pointer returned by a Query command. You
may have more than one Cursor open at a time.

<cv_svars> is an optional set of column value string variables that return data from the database to
your program. The Cursor carries the values from the table columns listed in the Query. Sql.next
retrieves one row from the Cursor as string values and writes them into the <cv_svars>. If any of your
columns are numeric, you can use the BASIC! VAL(str$) function to convert the strings to numbers.

When this command reads a row of data, it sets the Done flag <done_lvar> to false (0.0). If it finds no
data to read, it changes the Done flag to true (1.0) and resets the cursor variable <cursor_nvar> to
zero. The Cursor can no longer be used for Sql.next operations. The cursor variable may be used
with another Cursor from a different Query.

In its simplest form, <cv_svars> is a comma-separated list of string variable names. Each variable
receives the data of one column. If there are more variables than columns, the excess variables are
left unchanged. If there are more columns than variables, the excess data are discarded.

SQL.NEXT done, cursor, cv1$, cv2$, cv3$ % get data from up to three columns

The last (or only) variable may be a string array name with no index(es):

SQL.NEXT done, cursor, cv$[] % get data from ALL available columns

The data from any column(s) that are not written to string variables are written into the array. If no
column data are written to the array, the array has one element, an empty string "". If the variable
names an array that already exists, it is overwritten.

2023-09-05 Basic! Language Reference Page 157 of 209
If the last (or only) <cv_svars> variable is an array, you may also add (after another comma) a numeric
variable <ncol_nvar>. This variable receives the total number of columns in the cursor. Note that this
is not necessarily the same as the size of the array.

SQL.NEXT done, cursor, cv$[], nCols % report number of columns available

The full specification for this command, including the optional array and column count, is as follows:

Sql.next <done_lvar>, <cursor_nvar> {, svar}... {, array$[] {, <ncol_nvar>}}

39.8 Sql.open
Syntax: Sql.open <DB_pointer_nvar>, <DB_name_sexp>

Opens a database for access. If the database does not exist, it will be created.

<DB_pointer_nvar> is a pointer to the newly opened database. This value will be set by the sql.open
command operation. <DB_pointer_nvar> is used in subsequent database commands and should not
be altered.

<DB_name_sexp> is the filename used to hold this database. The base reference directory is "<pref
base drive>/com.rfo.basic/databases/". If <DB_name_sexp> = ":memory:" then a temporary database
will be created in memory.

Note: You may have more than one database opened at the same time. Each opened database must
have its own, distinct pointer.

39.9 Sql.query
Syntax: Sql.query <cursor_nvar>, <DB_pointer_nvar>, <table_name_sexp>, <columns_sexp> {,

<where_sexp> {, <order_sexp>} }

Queries a table of a previously-opened database for some specific data. The command returns a
Cursor named <Cursor_nvar> to be used in stepping through Query results.

The <columns_sexp> is a string expression with a list of the names of the columns to be returned. The
column names must be separated by commas. An example is Columns$ = "First_name, Last_name,
Sex, Age". If you want to get the automatically incremented Row Index Column then include the "_id"
column name in your column list. Columns may be listed in any order. The column order used in the
query will be the order in which the rows are returned.

The optional <where_sexp> is an SQL expression string used to select which rows to return. In
general, an SQL expression is of the form <Column Name> <operator> <Value>. For example, Where$
= "First_name = 'John' " Note that the Value must be contained in single quotes. Full details about the
SQL expressions can be found here. If the Where parameter is omitted, all rows will be returned.

The optional <order_sexp> specifies the order in which the rows are to be returned. It identifies the
column upon which the output rows are to be sorted. It also specifies whether the rows are to be sorted
in ascending (ASC) or descending (DESC) order. For example, Order$ = "Last_Name ASC" would
return the rows sorted by Last_Name from A to Z. This will sort upper and lower case separately (case
sensitive). For case insensitive sorts, replace the "ASC" or "DESC" (ascending or descending) part of
the <order_sexp> argument with "COLLATE NOCASE ASC" OR "COLLATE NOCASE DESC"
respectively.

If the Order parameter is omitted, the rows are not sorted. If the Order parameter is present, the Where
parameter must also be present. If you want to return all rows, just set Where$ = "".

http://www.sqlite.org/lang_expr.html

Page 158 of 209 Basic! Language Reference 2023-09-05
39.10 Sql.query.length
Syntax: Sql.query.length <length_nvar>, <cursor_nvar>

Report the number of records returned by a previous Query command, Given the Cursor returned by a
Query, the command writes the number of records into <length_nvar>. This command cannot be used
after all of the data has been read.

39.11 Sql.query.position
Syntax: Sql.query.position <position_nvar>, <cursor_nvar>

Report the record number most recently read using the Cursor of a Query command. Given the Cursor
returned by a Query, the command writes the position of the Cursor into <Position_nvar>. Before the
first Next command, the Position is 0. It is incremented by each Next command. A Next command
after the last row is read sets its Done variable to true and resets the Cursor to 0. The Cursor can no
longer be used, and this command can no longer be used with that Cursor.

39.12 Sql.raw_query
Syntax: Sql.raw_query <cursor_nvar>, <DB_pointer_nvar>, <query_sexp>

Execute ANY SQL Query command using a previously opened database and return a Cursor for the
results.

39.13 Sql.update
Syntax: Sql.update <DB_pointer_nvar>, <table_name_sexp>, C1$, V1$, C2$, V2$,...,CN$, VN${:

<where_sexp>}

In the named table of a previously opened database, change column values in specific rows selected
by the Where$ parameter <where_sexp>. The C$,V$ parameters must be in pairs. The colon
character terminates the C$,V$ list and must precede the Where$ in this command. The Where$
parameter and preceding colon are optional.

BASIC! also uses the colon character to separate multiple commands on a single line. The use of a
colon in this command conflicts with that feature. Use caution when using both together.

If you put a colon on a line after this command, the preprocessor always assumes the colon is part of
the command and not a command separator. If you are not certain of the outcome, the safest action is
to put the Sql.update command on a line by itself, or at the end of a multi-command line.

2023-09-05 Basic! Language Reference Page 159 of 209
40 Stack Commands
Stacks are like a magazine for a gun. The last bullet into the magazine is the first bullet out of the
magazine. This is also what is true about stacks. The last object placed into the stack is the first object
out of the stack. This is called LIFO (Last In First Out).

An example of the use of a stack is the BASIC! Gosub command. When a Gosub command is
executed the line number to return to is "pushed" onto a stack. When a Return is executed the return
line number is "popped" off of the stack. This methodology allows Gosubs to be nested to any level.
Any Return statement will always return to the line after the last Gosub executed.

A running example of Stacks can be found in the Sample Program file, f29_stack.bas.

There is no fixed limit on the size or number of stacks. You are limited only by the memory of your
device.

40.1 Stack.clear
Syntax: Stack.clear <ptr_nexp>

The stack designated by <ptr_nexp> will be cleared.

40.2 Stack.create
Syntax: Stack.create N|S, <ptr_nvar>

Creates a new stack of the designated type (N=Number, S=String). The stack pointer is in <ptr_nvar>.

40.3 Stack.isEmpty
Syntax: Stack.isEmpty <ptr_nexp>, <nvar>

If the stack designated by <ptr_nexp> is empty the value returned in <nvar> will be 1. If the stack is not
empty the value will be 0.

40.4 Stack.peek
Syntax: Stack.peek <ptr_nexp>, <nvar>|<svar>

Returns the top-of-stack value of the stack designated by <ptr_nexp> into the <nvar> or <svar>. The
value will remain on the top of the stack.

The type of the value variable must match the type of the created stack.

40.5 Stack.pop
Syntax: Stack.pop <ptr_nexp>, <nvar>|<svar>

Pops the top-of-the-stack value designated by <ptr_nexp> and places it into the <nvar> or <svar>.

The type of the value variable must match the type of the created stack.

40.6 Stack.push
Syntax: Stack.push <ptr_nexp>, <nexp>|<sexp>

Pushes the <nexp> or <sexp> onto the top of the stack designated by <ptr_nexp>.

The type of value expression pushed must match the type of the created stack.

Page 160 of 209 Basic! Language Reference 2023-09-05
40.7 Stack.type
Syntax: Stack.type <ptr_nexp>, <svar>

The type (numeric or string) of the stack designated by <ptr_nexp> will be returned in <svar>. If the
stack is numeric, the upper case character "N" will be returned. If the stack is a string stack, the upper
case character "S" will be returned.

2023-09-05 Basic! Language Reference Page 161 of 209
41 String Functions That Return a String

41.1 Bin$
Syntax: Bin$(<nexp>)

Returns a string representing the binary representation of the numeric expression.

41.2 Chr$
Syntax: Chr$(<nexp>, ...)

Return the character string represented by the values of list of numerical expressions. Each <nexp> is
converted to a character. The expressions may have values greater than 255 and thus can be used to
generate Unicode characters.

Print Chr$(16*4 + 3) % Hexadecimal 43 is the character "C". This prints: C
Print Chr$(945, 946) % Decimal for the characters alpha and beta: Prints: αβ

41.3 Decode$
Syntax: Decode$(<type_sexp>, {<qualifier_sexp>}, <source_sexp>)

or

Syntax: Decode$(<charset_sexp>, <buffer_sexp>)

The first form of this command returns the result of decoding a string <source_sexp> that was encoded
with Encode$(). The <type_sexp> and <qualifier_sexp> describe how the string was encoded. You
must use the same type and qualifier that were used to encode the source string, or you may get
unpredictable results.

Type Qualifier Default Result
"ENCRYPT" password ""

(empty)
Decrypts the source string using the password parameter. The
encryption algorithm is "PBEWithMD5AndDES". This usage of
Decode$() works the same way as the Decrypt command.

"DECRYPT" password "" Same as type "ENCRYPT" (decrypts, does not encrypt).
"ENCRYPT" password "" Same as type "DECRYPT" except the input and output are

buffer strings. This is useful for decrypting binary data.
"DECRYPT" password "" Same as type "ENCRYPT".

"URL" charset "UTF-8" Decodes the source string assumed to be in the format
required by HTML application/x-www-form-urlencoded. You
should omit the charset parameter. See 51 Appendix -
 urlencoded .

"BASE64" charset "UTF-8" Decodes the source string holding the Base64 representation
of binary data. See RFCs 2045 and 3548.

The type is required, but see the two-parameter form of Encode$() and Decode$().

The type IS NOT case-sensitive: "BASE64", "base64", and "Base64" are all the same.

The qualifier is optional, but its comma is required.

If you supply the qualifier, whether password or charset, it IS case-sensitive.

The source string is decoded to a byte stream according to the type. Then the byte stream is converted
to a BASIC! string (UTF-16) according to the character encoding (the charset parameter), which
describes how to interpret the byte stream. The charset is always UTF-8 for decryption, and defaults to
UTF-8 for the other types. The most common usage of this function is to omit the charset.

http://www.w3.org/TR/html4/interact/forms.html#h-17.13.4.1
http://www.ietf.org/rfc/rfc3548.txt
http://www.ietf.org/rfc/rfc2045.txt

Page 162 of 209 Basic! Language Reference 2023-09-05
If the source string was encoded from binary data (with "ENCRYPT_RAW" or "BASE64"), the resulting
BASIC! string will be a buffer string. When a string is used as a buffer, one byte of data is written into
the lower 8 bits of each 16-bit character, and the upper 8 bits are 0. You can extract the binary data
from the string, one byte at a time, using the Ascii() or Ucode() functions.

If the source string cannot be decoded (or decrypted) with the specified charset (or password), the
function returns an empty string (""). You can call the GetError() function to get an error message.

See the two-parameter form of Encode$(), for a partial list of valid charsets.

Syntax: Decode$(<charset_sexp>, <buffer_sexp>)

The second form of this command decodes the buffer string <buffer_sexp> that was encoded using the
<charset_sexp> and returns the result in a standard BASIC! string. A buffer string is a special use of
the BASIC! string in which each 16-bit character consists of one byte of 0 and one byte of data.

If the source string cannot be decoded with the specified charset, the function returns an empty string
(""). You can call the GetError$() function to get an error message.

If you attempt to Decode$() a string that is not a buffer string, you may get unexpected results.
Besides the function Encode$(), the commands Byte.read.buffer and BT.read.bytes can write buffer
strings. Your program can also build such strings directly, character-by-character.

If you read data from a file with Byte.read.buffer, you can use Decode$() to reassemble the bytes into
BASIC! (UTF-16) strings. The charset specifies how the original string was encoded when it was
written as bytes to the file.

For example, a binary file may have embedded text strings for names or titles. In order to allow
Unicode, the text may be encoded. Let’s say you read 32 bytes of binary data, consisting of 8 bytes of
binary and 24 bytes of UTF-8-encoded text:

Byte.read.buffer file, 32, bfr$
namebfr$ = Mid$(bfr$, 9)
name$ = Decode$("UTF-8", namebfr$)

For encryption and URL- or Base64-decoding, see the three-parameter form of Decode$().

41.4 Encode$
Syntax: Encode$(<type_sexp>, {<qualifier_sexp>}, <source_sexp>)

or

Syntax: Encode$(<charset_sexp>, <source_sexp>)

The first form of this command returns the string <source_sexp> encoded in one of several ways, as
specified by the <type_sexp>. The <qualifier_sexp> usage depends on the type:

Type Qualifier Default Result
"ENCRYPT" password ""

(empty)
Encrypts the source string using the password parameter.
The encryption algorithm is "PBEWithMD5AndDES".
This usage of Encode$() works the same way as the
Encrypt command. Use the Decode$() function to
decrypt.

"DECRYPT" password "" Same as type "ENCRYPT" (encrypts, does not decrypt).
"ENCRYPT_RAW" password "" Same as type "ENCRYPT" except the input and output

are buffer strings. This is useful for encrypting binary

2023-09-05 Basic! Language Reference Page 163 of 209
data.

"DECRYPT_RAW" password "" Same as "ENCRYPT_RAW" (encrypts, does not decrypt).
"URL" charset "UTF-

8"
Encodes the source string using the format required by
HTML application/x-www-form-urlencoded. You should
omit the charset parameter.

"BASE64" charset "UTF-
8"

Encodes the source string into the Base64 representation
of binary data. See RFCs 2045 and 3548. The simplest
way to use this function is to omit the charset parameter.

The type is required, but see the two-parameter form of Encode$() and Decode$().

The type IS NOT case-sensitive: "BASE64", "base64", and "Base64" are all the same.

The qualifier is optional, but its comma is required.

If you supply the qualifier, whether password or charset, it IS case-sensitive.

If the source string cannot be encoded (or encrypted) with the specified charset (or password), the
function returns an empty string (""). You can call the GetError$() function to get an error message.

"ENCRYPT", "DECRYPT", and "URL" can be used on any BASIC! string. The string is converted to a
byte stream, then the byte stream is encrypted or URL-encoded. The encrypted byte stream is
converted to string format using the Base64 representation of binary data (see comment for "BASE64"
in the table above. URL-encoded strings do not require this extra step.

"ENCRYPT_RAW" and "DECRYPT_RAW" are intended for use with binary data in a buffer string. A
buffer string is a special use of the BASIC! string in which each 16-bit character consists of one byte of
0 and one byte of data. "ENCRYPT_RAW" can encrypt a buffer string or an ASCII text string, but using
it on Unicode text will corrupt the string. After encryption, the result is returned in another buffer string.

"BASE64" also converts its string to a byte-stream before encoding it to Base64. The default
conversion, using UTF-8, works with any BASIC! string; specifying another character set encoding may
corrupt data.

Normally, you would use "BASE64" on binary data in a buffer string. In this case, you may specify any
valid charset with no data corruption. The encoding string will change, but it can always be decoded
using the same charset.

See the two-parameter form of Encode$(), for a partial list of valid charsets.

Syntax: Encode$(<charset_sexp>, <source_sexp>)

The second form of this command encodes the string <source_sexp> using the character encoding of
the <charset_sexp> and returns the result in a buffer string. When a string is used as a buffer, one byte
of data is written into the lower 8 bits of each 16-bit character, and the upper 8 bits are 0.

The charset specifies the rules used to convert the source string into a byte stream. The stream is
written to a buffer string, one byte per character. The bytes are not reassembled into 16-bit characters.

The charsets "UTF-8", "UTF-16", "UTF-16BE", "UTF-16LE", "US-ASCII", and "ISO-8859-1" are always
available. Your device may have additional charsets. The charset names are case-sensitive, but the
standard charsets have aliases for convenience. For example, "utf8" is valid.

If the source string cannot be encoded with the specified charset, the function returns an empty string
(""). You can call the GetError$() function to get an error message.

If you create a buffer string with Encode$(), you can write the bytes to a file with Byte.write.buffer.

http://www.w3.org/TR/html4/interact/forms.html#h-17.13.4.1
http://www.ietf.org/rfc/rfc3548.txt
http://www.ietf.org/rfc/rfc2045.txt

Page 164 of 209 Basic! Language Reference 2023-09-05
For encryption and URL- or Base64-encoding, see the three-parameter form of Encode$().

41.5 Format$
Syntax: Format$(<pattern_sexp>, <nexp>)

Returns a string with <nexp> formatted by the pattern <pattern_sexp>.

Leading Sign A negative (-) character for numbers < 0 or a space for numbers >= 0.
The Sign and the Floating Character together form the Floating Field.

Floating
Character

If the first character of the pattern is not "#" or "." or "-" then that character becomes
a "floating" character. This pattern character is typically a "$".
If no floating character is provided then a space character is used.
See also Overflow, below.

Decimal Point The pattern may have one optional decimal point character (".").
If the pattern has no decimal point, then only the whole number is ouput.
Any digits that would otherwise appear after the decimal point are not output.

Character
(before
decimal, or no
decimal)

Each "#" is replaced by a digit from the number. If there are more "#" characters
than digits, then the leading "#" character(s) are replaced by space(s).

Character
(after decimal
point)

Each "#" is replaced by a digit from the number. If there are more "#" characters
than significant digits, then the trailing "#" character(s) are replaced by zero(s).
The number of "#" characters after the pattern decimal point specifies the number
of decimal digits that will be output.

% Character
(before
decimal, or no
decimal)

Each "%" is replaced by a digit from the number. If there are more "%" characters
than digits, then the leading "%" character(s) are replaced by zero(s).

% Character
(after decimal)

The "%" character is not allowed after the decimal point. This is a syntax error.

Non-pattern
Characters

If any pattern character (other than the first) is not # or %, then that character is
copied directly into the output. If the character would appear before the first digit of
the number, it is replaced by a space. This feature is usually used for commas.

Overflow If the number of digits exceeds the number of # and % characters, then the output
has the ** characters inserted in place of the Floating Field.

Output Size The number of characters output is always the number of characters in the pattern
plus one for the sign, plus one more for the space if the pattern has no Floating
Character.

The sign and the floating character together form a Floating Field two characters wide that always
appears just before the first digit of the formatted output. If there are any leading spaces in the
formatted output, they are placed before the floating field.

The "#" character generates leading spaces, not leading zeros. "##.###" formats 0.123 as ".123". If
you want a leading zero, use a "%". For example "%.###", "#%.###", or "##%" all assure a leading
zero.

Be careful mixing # and % characters. Doing so except as just shown can produce unexpected results.

The number of characters output is always the number of characters in the pattern plus the two floating
characters.

Examples:

Function Call Output Width

2023-09-05 Basic! Language Reference Page 165 of 209
Format$("##,###,###", 1234567) 1,234,567 12 characters
Format$("%%,%%%,%%%.#", 1234567.89) 01,234,567.8 14 characters
Format$("$###,###", 123456) $123,456 9 characters
Format$("$###,###", -1234) -$1,234 9 characters
Format$("$###,###", 12) $12 9 characters
Format$("$%%%,%%%", -12) -$000,012 9 characters
Format$("##.#", 0) .0 6 characters
Format$("#%.#", 0) 0.0 6 characters
Format$("$###.##", -1234.5) **234.50 8 characters

41.6 Format_using$
Syntax: Format_using$(<locale_sexp>, <format_sexp> { , <exp>}...)

Alias for Using$(). You can use the two equivalent functions to make your code easier to read. For
example:

string$ = Format_using("", "pi is not %d", int(pi()))
Print Using$("en_US", "Balance: $%8.2f", balance)

41.7 Hex$
Syntax: Hex$(<nexp>)

Returns a string representing the hexadecimal representation of the numeric expression.

41.8 Int$
Syntax: Int$(<nexp>)

Returns a string representing the integer part of the numeric expression.

41.9 Left$
Syntax: Left$(<sexp>, <count_nexp>)

Return the left-most characters of the string <sexp>. The number of characters to return is set by the
count parameter, <count_nexp>.

 If the count is greater than 0, return <count_nexp> characters, counting from the left.

 If the count is less than 0, return all but <count_nexp> characters. The number to return is the
string length reduced by <count_nexp>: Left$(a$, -2) is the same as Left$(a$, LEN(a$) - 2).

 If the count is 0, return an empty string ("").

 If the count is greater than the length of the string, return the entire string.

41.10 Lower$
Syntax: Lower$(<sexp>)

Returns <sexp> in all lower case characters.

41.11 Ltrim$
Syntax: Ltrim$(<sexp>{, <test_sexp>})

Exactly like Trim$(), except that Ltrim$() trims only the left end of the source string <sexp>.

Page 166 of 209 Basic! Language Reference 2023-09-05
41.12 Mid$
Syntax: Mid$(<sexp>, <start_nexp>{, <count_nexp>})

Return a substring of the string <sexp>, beginning or ending at the start position <start_nexp>. The
first character of the string is at position 1. If the start position is 0 or negative, it is set to 1.

The count parameter is optional. If it is omitted, return all of the characters from the start position to the
end of the string.

a$ = Mid$("dinner", 2) % a$ is "inner"

Otherwise, the absolute value of the count specifies the length of the returned substring:

 If the count is greater than 0, begin at <start_nexp> and count characters to the right.
That is, return the substring that begins at the start position.
If the start position is greater than the length of the string, return an empty string ("").

 If the count is less than 0, begin at <start_nexp> and count characters to the left.
That is, return the substring that ends at the start position.
If the start position is greater than the length of the string, it is set to the end of the string.

 If the count is 0, return an empty string ("").

a$ = Mid$("dinner", 2, 3) % a$ is "inn"
a$ = Mid$("dinner", 4, -3) % a$ is "inn"
a$ = Mid$("dinner", 3, 0) % a$ is ""

41.13 Oct$
Syntax: Oct$(<nexp>)

Returns a string representing the octal representation of the numeric expression.

41.14 Replace$
Syntax: Replace$(<sexp>, <argument_sexp>, <replace_sexp>)

Returns <sexp> with all instances of <argument_sexp> replaced with <replace_sexp>.

41.15 Right$
Syntax: Right$(<sexp>, <count_nexp>)

Return the right-most characters of the string <sexp>. The number of characters to return is set by the
count parameter, <count_nexp>.

 If the count is greater than 0, return <count_nexp> characters, counting from the right.

 If the count is less than 0, return all but <count_nexp> characters. The number to return is the
string length reduced by <count_nexp>: Right$(a$, -2) is the same as Right$(a$, LEN(a$) - 2).

 If the count is 0, return an empty string ("").

 If the count is greater than the length of the string, return the entire string.

41.16 Rtrim$
Syntax: Rtrim$(<sexp>{, <test_sexp>})

Exactly like Trim$(), except that Rtrim$() trims only the right end of the source string <sexp>.

2023-09-05 Basic! Language Reference Page 167 of 209
41.17 Str$
Syntax: Str$(<nexp>)

Returns the string representation of <nexp>.

41.18 Trim$
Syntax: Trim$(<sexp>{, <test_sexp>})

Returns <sexp> with leading and trailing occurrences of <test_sexp> removed.

The expression to trim off, <test_sexp>, is optional. If omitted, all leading and trailing whitespace is
removed. That is, the default <test_sexp> is the regular expression "\s+", which means "all
whitespace". To use this regular expression in a BASIC! string, you must write it "\\s+" (escape the
backslash).

As with the Word$() function and the Split command, the <test_exp> is a regular expression. See
Split for a note about Regular Expressions.

41.19 Upper$
Syntax: Upper$(<sexp>)

Returns <nexp> in all upper case characters.

41.20 Using$
Syntax: Using$({<locale_sexp>} , <format_sexp> { , <exp>}...)

Returns a string, using the locale and format expressions to format the expression list.

This function gives BASIC! programs access to the Formatter class of the Android platform. You can
find full documentation at http://developer.android.com/reference/java/util/Formatter.html, also at 52
Appendix – Formatter.

The <locale_sexp> is a string that tells the formatter to use the formatting conventions of a specific
language and region or country. For example, "en_US" specifies American English conventions.

The <format_sexp> is a string that contains format specifiers, like "%d" or "%7.2f," that tell the formatter
what to do with the expressions that follow.

The format string is followed by a list of zero or more expressions. Most format specifiers take one
argument from the list, in order. If you don’t provide as many arguments as your format string needs,
you will get a detailed Java error message.

Each expression must also match the type of the corresponding format specifier. If you try to apply a
string format specifier, like "%-7s", to a number, or a floating point specifier, like "%5.2f" to a string, you
will get a Java error message.

41.20.1 Locale expression

The Using$() function can localize the output string based on language and region. The locale
specifies the language and region with standardized codes. The <locale_sexp> is a string containing
zero or more codes separated by underscores.

The function accepts up to three codes. The first must be a language code, such as "en", "de", or "ja".
The second must be a region or country code, such as "FR", "US", or "IN". Some language and
country combinations can accept a third code, called the "variant code".

http://developer.android.com/reference/java/util/Formatter.html

Page 168 of 209 Basic! Language Reference 2023-09-05
The function also accepts the standard three-letter codes and numeric codes for country or region. For
example, "fr_FR", "fr_FRA", and "fr_250" are all equivalent.

If you want to use the default locale of your Android device, make the <locale_exp> an empty string (""),
or leave it out altogether. If you leave it out, you must keep the comma: Using$(, "%f", x)

If you make a mistake in the <locale_sexp>, you may get an obscure Java error message, but more
likely your locale will be ignored, and your string will be formatted using the default locale of your
device.

Android devices do not support all possible locales. If you specify a valid locale that your device does
not understand, your string will be formatted using the default locale.

41.20.2 Format expression

If you are familiar with the printf functions of C/C++, Perl, or other languages, you will recognize most of
format specifiers of this function. The format expression is exactly the same as format string of the
Java Formatter class, or the format(String, Object…) method of the Java String, with two exceptions:
Boolean format specifiers are not supported, and hex hash specifiers are limited to numeric and string
types.

If you have not programmed in one of those other languages, this will be your introduction to a powerful
tool for formatting text.

A format expression is a string with embedded format specifiers. Anything that is not a format specifier
is copied literally to the function output string. Each embedded format specifier is replaced with the
value of an expression from the list, formatted according to the specifier. For example:

Print Using$("","Pi is approximately %f.", PI()) % function call
Pi is approximately 3.141593. % printed output for
 % English locale

The <locale_exp> is "", meaning "use my default locale".

The <format_exp>, "Pi is approximately %f", has one format specifier, "%f".

"%f" means, "use the default decimal floating point output format".

The expression list has one item, the math function Pi().

In the output, "%f" is replaced by the value of the the Pi() function.

Your output may be different if your locale language is not English.

41.20.2.1 Format Specifiers

Here is a brief summary of the available format specifiers:

For this type of
data

Use these formats Comments

String %s %S %S forces output to upper-case
Number %f %e %E %g %G %a %A Standard BASIC! numbers are floating point

Use %f for decimal output: "1234.567"
Use %e or %E for exponential notation: "1.234e+03"
%E writes upper-case: "1.234E+03"
%g (%G) lets the system choose %f or %e (%E)
%a and %A are "hexadecimal floating point"

Integer %d %o %x %X USING$ can use some math functions as integers
Use %d for decimal, %o for octal, %x %X for hex
%x writes lower-case abcdef, %X writes upper-case

2023-09-05 Basic! Language Reference Page 169 of 209
Special integer %c %C %t These specifiers can operate on an integer

%c %C output a character, %C writes upper-case
%t represents a family of time format specifiers

None %% %n These specifiers do not read the expression list
%% writes a single "%" to the output
%n writes a newline, exactly the same as \n

For more information about %a and %A, see the Android documentation linked above.

Android’s %b and %B are not supported because BASIC! has no Boolean type.

Android’s %h and %H hash code specifiers are limited to strings and numbers in BASIC!.

For an explanation of Using$() with integer format specifiers, see below.

There is a whole family of time format specifiers: %t<x> where <x> is another letter. They operate on
an integer, which they interpret as the number of milliseconds since the beginning of January 1, 1970,
UTC (the "epoch"). You can apply time format specifiers to the output of the Time() functions. Note,
however, that the %t time specifiers use your local timezone, not the TimeZone.set value.

There are more than 30 time format specifiers. A few examples appear below, but to get the full list you
should read the Android documentation linked above.

Print Using$("", "The time is: %tI:%<tM:%<tS %<Tp", time()) % the hard way
Print Using$("", "The time is: %tr", time()) % same thing!
02:27:16 PM % sample of printed output

t = Time(2001, 2, 3, 4, 5, 6) % set 2001/02/03 04:05:06, local timezone
Print Using$("sv", "%tA", int(t)) % day in Swedish, prints "lördag"
Print Using$("es", "%tB", int(t)) % month in Spanish, prints "febrero"
Print Using$("", "%tY/%tm/%td", int(t) , int(t), int(t)) % prints
 % "2001/02/03"
Print Using$(, "%tY/%<tm/%<td", int(t)) % prints "2001/02/03"
Print Using$("en_GB", "%tH:%<tM:%<tS", int(t)) % prints "04:05:06"
Print Using$("in_IN", "%tT", int(t)) % prints "04:05:06"

Note: Date and time are printed for your local timezone, regardless of either the Timezone.set setting or
the locale parameter. Try the same set of examples with Timezone.set "UTC". Unless that is your
local timezone, a different hour and perhaps even a different day will be displayed.

41.20.2.2 Optional Modifiers

The format specifiers can be used exactly as shown in the table. They have default settings that
control how they behave. You can control the settings yourself, fine-tuning the behavior to suit your
needs.

You can modify the format specifiers with index, flags, width, and precision, as shown in this example:

"%3$-,15.4f"
"% 3$ -, 15 . 4 f "

<index> <flags> <width> <precision> <specifier>

41.20.2.3 Index

Normally the format specifiers are applied to the arguments in order. You can change the order with an
argument index. An index a number followed by a $ character. The argument index 3$ specifies the
third argument in the list.

Print Using$("", "%3$s %s %s", "a", "b", "c") % prints "c a b"

The special argument index "<" lets you reuse an argument.

Print Using$("", "%o %<d %<h", int(64)) % prints "100 64 40"

Page 170 of 209 Basic! Language Reference 2023-09-05
In the last example, there is only one argument, but three format specifiers. This is not an error
because the argument is reused.

41.20.2.4 Flags

There are six flags:

- left-justify; if no flag, right-justify
+ always show sign; if no flag, show "-" but do not show "+"
0 pad numbers with leading zeros; if no flag pad with spaces
, use grouping separators for large numbers
(put parentheses around negative values
alternate notation (leading 0 for octal, leading 0x for

hexadecimal)

41.20.2.5 Width

The width control sets the minimum number of characters to print. If the value to format is longer than
the width setting, the entire value is printed (unless it would exceed the precision setting). If the value
to format is shorter than the width setting, it is padded to fill the width. By default, it is padded with
spaces on the left, but you change this with the "-" and "0" flags.

41.20.2.6 Precision

The precision control means different things to different data types.

For floating point numbers, precision specifies the number of characters to print after the decimal
point, padding with trailing zeros if needed.

For string values, it specifies the maximum number of characters to print. If precision is less than
width, only precision characters are printed.

"%4s", "foo" prints " foo"
"%-4s", "foo" prints "foo "
"%4.2s", "foo" prints "fo"

The precision control is not valid for other types.

In the example above, %-,15.4f:

The flags "-" and "," mean "left-justify the output" and "use a thousands separator".

The width is 15, meaning the output is to be at least 15 characters wide.

The precision is 4, so there will be exactly four digits after the decimal point.

The whole format specifier means, "format a floating point number (%f) left-justified ("-") in a space 15
characters wide, with 4 characters after the decimal point, with a thousands separator (",")".

The characters used for the decimal point and the thousands separator depend on the locale:

"1,234.5678 " for locale "en"
"1 234,5678 " for locale "fr"
"1.234,5678 " for locale "it"

41.20.3 Integer values

BASIC! has only double-precision floating point numbers. It does not have an integer type. The
Using$() function supports format specifiers ("%d", "%t", "%x") that apply only to integer values.

Using$() has a special relationship with the math functions that intrinsically produce integer results.

2023-09-05 Basic! Language Reference Page 171 of 209
BASIC! converts the output of these functions to floating point, for storage in numeric variables, but
Using$() can get the original integer values. For example:

Print Using$("", "%d", 123) % ERROR!
Print Using$("", "%d", INT(123)) % No error

The functions that can produce integer values for Using$() are:

INT() BIN() OCT() HEX()
CEIL() FLOOR()
ASCII() UCODE()
BAND() BOR() BXOR()
SHIFT() TIME()

41.21 Word$
Syntax: Word$(<source_sexp>, <n_nexp> {, <test_sexp>})

This function returns a word from a string. The <source_sexp> string is split into substrings at each
location where <test_sexp> occurs. The <n_nexp> parameter specifies which substring to return;
numbering starts at 1. The <test_sexp> is removed from the result. The <test_sexp> parameter is an
optional Regular Expression; if it is not given, the source string is split on whitespace. Specifically, the
default <test_sexp> is "\s+".

Leading and trailing occurrences of <test_sexp> are stripped from <source_sexp> before it is split. If
<n_nexp> is less than 1 or greater than the number of substrings found in <source_sexp>, then an
empty string ("") is returned. Two adjacent occurrences of <test_sexp> in <source_sexp> result in an
empty string; <n_nexp> may select this empty string as the return value.

Examples:
string$ = "The quick brown fox"
result$ = Word$(string$, 2); % result$ is "quick"

string$ = ":a:b:c:d"
delimiter$ = ":"
Split array$[], string$, delimiter$ % array$[1] is ""
result$ = Word$(string$, 1, delimiter$) % result$ is "a", not ""

This function is similar to the Split command. See Split for a note about Regular Expressions.

Page 172 of 209 Basic! Language Reference 2023-09-05
42 String Functions That Return a Number

42.1 Ascii
Syntax: Ascii(<sexp>{, <index_nexp>})

Returns the ASCII value of one character of <sexp>. By default, it is the value of the first character.
You can use the optional <index_nexp> to select any character. The index of the first character is 1.

A valid ASCII value is between 0 and 255. If <sexp> is an empty string ("") the value returned will be
256 (one more than the largest 8-bit ASCII value). For non-ASCII Unicode characters, Ascii() returns
invalid values; use Ucode() instead.

42.2 Bin
Syntax: Bin(<sexp>)

Returns the numerical value of the string expression <sexp> interpreted as a binary integer. The
characters of the string can be only binary digits (0 or 1), with an optional leading sign ("+" or "-"), or the
function generates a runtime error.

42.3 Ends_with
Syntax: Ends_with(<sub_sexp>, <base_sexp>)

Determines if the substring <sub_sexp> exactly matches the end of the base string <base_sexp>.

If the base string ends with the substring, the function returns the index into the base string where the
substring starts. The value will always be >= 1. If no match is found, the function returns 0.

42.4 Hex
Syntax: Hex(<sexp>)

Returns the numerical value of the string expression <sexp> interpreted as a hexadecimal integer. The
characters of the string can be only hexadecimal digits (0-9, a-h, or A-H), with an optional leading sign
("+" or "-"), or the function generates a runtime error.

42.5 Is_in
Syntax: Is_in(<sub_sexp>, <base_sexp>{, <start_nexp>})

Returns the position of an occurrence of the substring <sub_sexp> in the base string <base_sexp>.

If the optional start parameter <start_nexp> is not present then the function starts at the first character
and searches forward.

If the start parameter is >= 0, then it is the starting position of a forward (left-to-right) search. The left-
most character is position 1. If the parameter is negative, it is the starting position of a reverse (right-to-
left) search. The right-most character is position -1.

If the substring is not in the base string, the function returns 0. It can not return a value larger than the
length of the base string.

42.6 Is_number
Syntax: Is_number(<sexp>)

Tests a string expression <sexp> in the same way as Val() and returns a logical value:

2023-09-05 Basic! Language Reference Page 173 of 209
 TRUE (non-zero) if Val() would successfully convert the string to a number

 FALSE (0) if Val() would generate a run-time error. For example, Val("name") generates a run-time
error, but Is_number("name") returns FALSE.

If Val() would report a syntax error, Is_number() reports a syntax error. For example, Is_number(),
Is_number(num), and Is_number(5) are syntax errors.

42.7 Len
Syntax: Len(<sexp>)

Returns the length of the <sexp>.

42.8 Oct
Syntax: Oct(<sexp>)

Returns the numerical value of the string expression <sexp> interpreted as an octal integer. The
characters of the string can be only octal digits (0-7), with an optional leading sign ("+" or "-"), or the
function generates a runtime error.

42.9 Starts_with
Syntax: Starts_with(<sub_sexp>, <base_sexp>{, <start_nexp>})

Determines if the substring <sub_sexp> exactly matches the part of the base string <base_sexp> that
starts at the position <start_nexp>. The <start_nexp> parameter is optional; if it is not present then the
default starting position is 1, the first character, so the base string must start with the substring. If
present, <start_nexp> must be >= 1.

The function returns the length of the matching substring. If no match is found, the function returns 0.

42.10 Ucode
Syntax: Ucode(<sexp>{, <index_nexp>})

Returns the Unicode value of one character of <sexp>. By default, it is the value of the first character.
You can use the optional <index_nexp> to select any character. The index of the first character is 1.

If <sexp> is an empty string ("") the value returned will be 65536 (one more than the largest 16-bit
Unicode value). If the selected character of <sexp> is a valid ASCII character, this function returns the
same value as Ascii().

42.11 Val
Syntax: Val(<sexp>)

Returns the numerical value of the string expression <sexp> interpreted as a signed decimal number. If
the string is empty ("") or does not represent a number, the function generates a runtime error.

 A sign ("+" or "-"), a decimal point ("." only), and an exponent (power of 10) are optional.

 An exponent is "e" or "E" followed by a number. The number may have a sign but no decimal point.

 The string may have leading and/or trailing spaces, but no spaces between any other characters.

Page 174 of 209 Basic! Language Reference 2023-09-05
43 String Commands
See also the various String Functions.

43.1 Decrypt
Syntax: Decrypt <pw_sexp>, <encrypted_sexp>, <decrypted_svar>

Decrypts the encrypted string <encrypted_sexp> using the password <pw_sexp>. The result is placed
in <decrypted_svar>. The encryption algorithm used is "PBEWithMD5AndDES".

The password parameter is optional, but its comma is required. Omitting the password is the same as
using an empty string, "".

If the source string cannot be decoded with the specified password, the result is an empty string ("").
You can call the GetError$() function to get an error message.

This command is the same as Decode$("ENCRYPT", <pw_sexp>, <source_sexp>).

43.2 Encrypt
Syntax: Encrypt {<pw_sexp>}, <source_sexp>, <encrypted_svar>

Encrypts the string <source_sexp> using the password <pw_sexp>. The result is placed into the
variable <encrypted_svar>. The encryption algorithm used is "PBEWithMD5AndDES".

The password parameter is optional, but its comma is required. Omitting the password is the same as
using an empty string, "".

If the source string cannot be encrypted, the result is an empty string (""). You can call the GetError$()
function to get an error message.

This command is the same as Encode$("ENCRYPT", <pw_sexp>, <source_sexp>).

43.3 Join / Join.all
Syntax: Join <source_array$[]>, <result_svar> {, <separator_sexp>{, <wrapper_sexp}}

or

Syntax: Join.all <source_array$[]>, <result_svar> {, <separator_sexp>{, <wrapper_sexp}}

Split and Join are complementary operations. Split separates a string into parts and put the parts in
an array. Join builds a string by combining the elements of an array.

The elements of the <source_array$[]> are joined together as a single string in the <result_svar>. By
default, the source elements are joined with nothing between them or around them.

You may specify optional modifiers that add characters to the string. Copies of the separator string
<separator_sexp> are written between source elements. Copies of the wrapper string <wrapper_sexp>
are placed before and after the rest of the result string.

The Join command omits any empty source elements. The Join.all command includes all source
elements in the result string, even if they are empty. There is no difference between the two commands
unless you specify a non-empty separator string. Join.all places copies of the separator between all of
the elements, including the empty ones.

An example of an operation that uses both separators and wrappers is a CSV string, for "comma-
separated values".

2023-09-05 Basic! Language Reference Page 175 of 209
InnerPlanets$ = "Mercury Venus Earth Mars"
Split IP$[], InnerPlanets$
Join IP$[], PlanetsCSV$, "\",\"", "\""
Print PlanetsCSV$

This prints the string "Mercury","Venus","Earth","Mars" (including all of the quotes). The
separator puts the "," between planet names, and the wrapper puts the " at the beginning and end of
the string.

43.4 Split / Split.all
Syntax: Split <result_array$[]>, <sexp> {, <test_sexp>}

or

Syntax: Split.all <result_array$[]>, <sexp> {, <test_sexp>}

Split and Join are complementary operations. Split separates a string into parts and put the parts in
an array. Join builds a string by combining the elements of an array.

Splits the source string <sexp> into multiple strings and place them into <result_array$[]>. The array is
specified without an index. If the array exists, it is overwritten. Otherwise a new array is created. The
result is always a one-dimensional array.

The string is split at each location where <test_sexp> occurs. The <test_sexp> occurrences are
removed from the result strings. The <text_sexp> parameter is optional; if it is not given, the string is
split on whitespace. Omitting the parameter is equivalent to specifying "\\s+".

If the beginning of the source string matches the test string, the first element of the result array will be
an empty string. This differs from the Word$() function, which strips leading and trailing occurrences of
the test string from the source string before splitting.

Two adjacent occurrences of the test expression in the source expression result in an empty element
somewhere in the result array. The Split command discards these empty strings if they occur at the
end of the result array. To keep these trailing empty strings, use the Split.all command.

Example:
string$ = "a:b:c:d"
delimiter$ = ":"
Split result$[], string$, delimiter$

Array.length length, result$[]
For i = 1 To length
Print result$[i] + " ";
Next i
Print ""

Prints: a b c d

Note: The <test_sexp> is actually a Regular Expression. If you are not getting the results that you
expect from the <test_sexp> then you should examine the rules for Regular Expressions at:

http://developer.android.com/reference/java/util/regex/Pattern.html

http://developer.android.com/reference/java/util/regex/Pattern.html

Page 176 of 209 Basic! Language Reference 2023-09-05
44 Superuser Commands
See comments under chapter 45 , System Commands . The Su commands are identical to the System
commands except that for Su commands:

• The initial working directory is the root directory, /.
• The resulting command shell has superuser privileges.

Some devices do not allow the SU.OPEN statement to execute successfully. In this case, the statement
fails, issuing an error message such as the following:

SU Exception: Cannot run program "su": error=13, Permission denied

44.1 Su.close
Syntax: Su.close

Exits the Superuser mode.

44.2 Su.open
Syntax: Su.open

Requests Superuser permission. If granted, opens a shell to execute system commands. The working
directory is set to /. If you open a command shell with either Su.open or System.open, you can't open
another one of either type without first closing the open one.

44.3 Su.read.line
Syntax: Su.read.line <svar>

Places the next available response line into the string variable.

44.4 Su.read.ready
Syntax: Su.read.ready <nvar>

Tests for responses from a Su.write command. If the result is non-zero, then response lines are
available. Not all Superuser commands return a response. If there is no response returned after a few
seconds then it should be assumed that there will be no response.

44.5 Su.write
Syntax: Su.write <sexp>

Executes a Superuser command.

2023-09-05 Basic! Language Reference Page 177 of 209
45 System Commands
BASIC! runs on devices that use Android, a Linux-based operating system. System commands allow
BASIC! to send text commands directly to the operating system. These commands are essentially
Linux commands.

The BASIC! statements in this section open a command shell. This is an environment with a saved
context. The context remembers the results of a given command so that they affect subsequent
commands. For example, if you change the working directory of a shell, the change remains in effect
for subsequent statements.

The BASIC! program must open the command interface before using it, and should close it when
operations are complete. The command interface works by sending string expressions and then
waiting for responses to be read back, one line at a time, into string variables. The time this takes is
device dependent. The shell does not respond to some commands at all, so the BASIC! program
should loop and be ready to time-out in an orderly manner if the shell does not respond.

The System statements use a shell to the Android operating system. The SU statements use a shell
with superuser privileges. Only one can be active at any time.

45.1 System.close
Syntax: System.close

Exits the System Shell mode. The shell's environment and context is discarded. Opening a new shell,
with the System or SU statements, will not have any information from a previous shell, unless the
program has saved it in, for example, a file or database.

45.2 System.open
Syntax: System.open

Opens a shell to execute system commands. The working directory is set to "rfo-basic". If the working
directory does not exist, it is created. If you open a command shell with either Su.open or
System.open, you can't open another one of either type without first closing the open one.

45.3 System.read.line
Syntax: System.read.line <svar>

Places the next available response line into the string variable. The returned string does not include a
line terminator.

The BASIC! program should use System.read.ready statement to see if a response is available. If a
response is not available, System.read.line sets <svar> to an empty string.

If System.read.ready indicates that the command shell has responded, then System.read.line can be
called repeatedly, without further polling or pauses, to retrieve each line of the response in sequence.
The BASIC! program should be written to take into account how many lines a command will return, or
continue calling System.read.line until it returns an empty string or a string known to be the last line of
the response. Some commands return blank lines; these also cause System.read.line to set <svar> to
an empty string.

45.4 System.read.ready <nvar>
Syntax: System.read.ready <nvar>

Page 178 of 209 Basic! Language Reference 2023-09-05
Tests for responses from a System.write command. If the result is non-zero, then response lines are
available. Not all System commands return a response. If there is no response returned after a period
of time (maybe a second) then it should be assumed that there will be no response.

45.5 System.write
Syntax: System.write <sexp>

Sends a System command <sexp> to the shell. The command in the string does not need to end with
a line terminator.

This example will request the listing of a specified directory:

SYSTEM.WRITE "ls -al " + DirectoryName$

2023-09-05 Basic! Language Reference Page 179 of 209
46 Time Functions
The TimeZone commands allow you to manage the timezone used by the Time command and the
TIME(…) function. They do not affect the no-parameter TIME() function. They affect only your BASIC!
program, not any other time-related operation on your device.

46.1 Clock
Syntax: Clock()

Returns the time in milliseconds since the last boot.

46.2 Time
Syntax: Time()

or

Syntax: Time(<year_exp>, <month_exp>, <day_exp>, <hour_exp>, <minute_exp>,
<second_exp>)

The first form of this command returns the time in milliseconds since 12:00:00 AM, January 1, 1970,
UTC (the "epoch"). The time interval is the same everywhere in the world, so the value is not affected
by the TimeZone command.

The second form of this command uses parameters to specify a moment in time. The specification is
not complete, as it does not include the timezone. You may specify a timezone with the TimeZone
command. If you do not specify a timezone, your local timezone is used.

The parameter expressions may be either numeric expressions or string expressions. This is an
unusual aspect as it isn't allowed anywhere else in BASIC!. If a parameter is a string, then it must
evaluate to a number: digits only, one optional decimal point somewhere, optional leading sign, no
embedded spaces. If the string parameter does not follow the rules, BASIC! reports a syntax error, like
using a string in a place that expects a numeric expression.

Time(…) (the function) and Time (the command) are inverse operations. Time(…) can take the first six
return parameters of the Time command directly as input parameters.

With the Using$() or Format_using$() functions, you can express a moment in time as a string in
many different ways, formatted for your locale.

Page 180 of 209 Basic! Language Reference 2023-09-05
47 Time Commands

47.1 Time
Syntax: Time {<time_nexp>,} Year$, Month$, Day$, Hour$, Minute$, Second$, WeekDay, isDST

Returns the current (default) or specified date, time, weekday, and Daylight Saving Time flag in the
variables.

You can use the optional first parameter (<time_nexp>) to specify what time to return in the variables.
It is a numeric expression number of milliseconds from 12:00:00 AM, January 1, 1970, UTC, as
returned by the TIME() functions. It may be negative, indicating a time before that date.

The day/date and time are returned as two-digit numeric strings with a leading zero when needed,
except Year$ which is four characters.

The WeekDay is a number from 1 to 7, where 1 means Sunday. You can use it to index an array of day
names in your language of choice.

The isDST flag is
 1 if the current or specified time is in Daylight Saving Time in the current timezone
 0 if the time is not in Daylight Saving Time (is Standard Time)
 -1 if the system can't tell if the time is in DST

The current timezone is your local timezone unless you change it with the TimeZone commands.

All of the return variables are optional. That is, you can omit any of them, but if you want to return only
some of them, you need to retain their position by including commas for the omitted return variables.
For example:

t = TIME(2001, 2, 3, 4, 5, 6)
Time t, Y$, M$, D$ % sets only the year, month, and day
Time t, Y$, M$, D$,,,, W % adds the day of the week (7, Saturday)

To do the same with the current time, leave out both the first parameter and its comma:

Time ,, day$,,,, wkday % returns the today's day and weekday

47.2 TimeZone.get
Syntax: TimeZone.get <tz_svar>

Returns the current timezone in the string variable. This is the default timezone for your device and
location, unless you have changed it with TimeZone.set.

47.3 TimeZone.list
Syntax: TimeZone.list <tz_list_pointer_nexp>

While timezones are defined by international standards, the only ones that matter to your program are
those recognized by your device. This command returns all valid timezone strings, putting them in the
list that <tz_list_pointer_nexp> points at. The previous contents of the list are discarded. If the pointer
does not specify a valid string list, and the expression is a numeric variable, a new list is created and
the variable is set to point to the new list.

47.4 TimeZone.set
Syntax: TimeZone.set { <tz_sexp> }

Sets the timezone for your program. If you don't specify a timezone, it is set to the default for your

2023-09-05 Basic! Language Reference Page 181 of 209
device, which is based on where you are. If you specify a timezone your device does not recognize, it
is set to "GMT". (In Android, GMT is exactly the same as UTC).

Page 182 of 209 Basic! Language Reference 2023-09-05
48 Timer Interrupt and Commands
You can set a timer that will interrupt the execution of your program at some set time interval. When
the timer expires, BASIC! jumps to the statements following the OnTimer: label. When you have done
whatever you need to do to handle this Timer event, you use the Timer.resume command to resume
execution of the program at the point where the timer interrupt occurred.

The timer cannot interrupt an executing command. When the timer expires, the current command is
allowed to complete. Then the timer interrupt code after the OnTimer: label executes. If the current
command takes a long time to finish, it may appear that your timer is late.

The timer cannot interrupt another interrupt. If the timer expires while any interrupt event handler is
running, the OnTimer: interrupt will be delayed. If the timer expires while the OnTimer: interrupt
handler is running, the timer event will be lost. The OnTimer: interrupt code must exit by running
Timer.resume, or the timer interrupt can occur only once.

48.1 OnTimer:
Interrupt handler for the timer interrupt. When done, execute the Timer.resume command to resume
the interrupted program.

48.2 Timer.clear
Syntax: Timer.clear

Clears the repeating timer. No further timer interrupts will occur.

48.3 Timer.resume
Syntax: Timer.resume

This command resumes an interrupted program. It should be included in an interrupt handler as
described in section OnTimer:.

48.4 Timer.set
Syntax: Timer.set <interval_nexp>

Sets a timer that will repeatedly interrupt program execution after the specified time interval. The
interval time units are milliseconds. The program must also contain an OnTimer: label.

Example:

n=0
Timer.set 2000

Do
Until n=4
Timer.clear
Print "Timer cleared. No further interrupts."
Do
Until 0

ONTIMER:
n = n + 1
Print n*2; " seconds"
Timer.resume

2023-09-05 Basic! Language Reference Page 183 of 209
49 User-Defined Functions
User-Defined Functions are BASIC! functions like Abs(n), Mod(a,b) and Left$(a$,n) except that the
operation of the function is defined by the user.

User-Defined Functions may call other User-Defined Functions. A function can even recursively call
itself.

You may define a function with the same name as a built-in function. The User-Defined Function
always overrides the built-in function, and the built-in function is not accessible.

Each time a function is called from another function a certain amount of memory is used for the
execution stack. The depth of these nested calls is limited only by the amount of memory that your
particular Android device allocates to applications.

49.1 Variable Scope
All variables created while running a User-Defined Function are private to the function. A variable
named v$ in the main program is not the same as variable v$ within a function. Furthermore, a variable
named v$ in a recursively called function is not the same v$ in the calling function.

A function cannot access variables created outside of the function except as parameters passed by
reference. See Fn.def, below, for an explanation of parameters passed by value and by reference.

All variables created while running a User-Defined Function are destroyed when the function returns.
When an array variable is destroyed, its storage is reclaimed. However, when a data structure pointer
is destroyed, the data structure is not destroyed (see next section).

49.2 Data Structures in User-Defined Functions
Data structures (List, Stack, Bundle, bitmap, graphical object – anything referenced through a pointer)
are global in scope. That is, if a variable is used as a pointer to a data structure, it points to the same
data structure whether it is used inside or outside of a function. The data structure may have been
created in the main program, the same user-defined function, or some other user-defined function.

This means that if you pass a pointer to a bundle, for example, and modify that bundle inside the
function, the changes will be retained when the function returns. It also means that a function can
modify graphical objects created outside of the function.

Data structures (List, Stack, Bundle, or graphical object) created while running a User-Defined Function
are not destroyed when the function returns. Local variables that point to the data structures are lost,
but you can return a data structure pointer as the function’s return value or through a parameter passed
by reference.

49.3 Commands

49.3.1 Fn.def

Syntax: Fn.def name|name$({nvar}|{svar}|Array[]|Array$[], ... {nvar}|{svar}|Array[]|Array$[])

Begins the definition of a function. This command names the function and lists the parameters, if any.

If the function name ends with the $ character then the function will return a string, otherwise it will
return a number. The parameter list can contain as many parameters as needed, or none at all. The
parameters may be numeric or string, scalar or array.

Your program must execute Fn.def before it tries to call the named function. Your program must not
attempt to create more than one function with the same name, or the same function more than once.
However, you may override a built-in function by defining your own function with the same name.

Page 184 of 209 Basic! Language Reference 2023-09-05
The following are all valid:

Fn.def cut$(a$, left, right)
Fn.def sum(a, b, c, d, e, f, g, h, i, j)
Fn.def sort(v$[], direction)
Fn.def pi() % Overrides built-in. You can make π = 3!

Parameters create variables visible only inside the function. They can be used like other variables
created inside the function (see Variable Scope).

There are two types of parameters: call by reference and call by value. Call by value means that the
calling variable value (or expression) is copied into the called variable. Changes made to the called
variable within the function do not affect the value of the calling variable. Call by reference means that
the calling variable value is changed if the called variable value is changed within the function.

Scalar (non-array) function variables can be either call by value or call by reference. Which type the
variable will be depends upon how it is called. If the calling variable has the "&" character in front of it,
then the variable is call by reference. If there is no "&" in front of the calling variable name then the
variable is call by value.

Fn.def test(a)
 a = 9
 Fn.rtn a
Fn.end

a = 1
Print test(a), a % will print: 9, 1
Print test(&a), a % will print: 9, 9

Array parameters are always called by reference.

Fn.def test(a[])
 a[1] = 9
 Fn.rtn a[1]
Fn.end

Dim a[1]
a[1] = 1
Print test(a[]), a[1] % prints: 9, 9

Along with the function’s return value, you can use parameters passed by reference to return
information to a function’s caller.

49.3.2 Fn.end

Syntax: Fn.end

Ends the definition of a user-defined function. Every function definition must end with Fn.end.

When your function is running, executing the Fn.end statement causes the function to terminate and
return a default value. If the function type is numeric then the default return value is 0.0. A string
function returns the empty string ("").

49.3.3 Fn.rtn

Syntax: Fn.rtn <sexp>|<nexp>

Causes the function to terminate execution and return the value of the return expression <sexp>|
<nexp>. The return expression type, string or number, must match the type of the function name.
Fn.rtn statements may appear anywhere in the function.

A function can return only a single scalar value. It cannot return an array. It cannot return a data
structure (List, Stack, Bundle, or graphical object), but it can return a pointer to a data structure.

2023-09-05 Basic! Language Reference Page 185 of 209
Note: You can also return information to a function’s caller through parameters passed by reference.

49.3.4 Call

Syntax: Call <user_defined_function>

Executes the user-defined function. Any value returned by the function will be discarded.

The Call command keyword is optional. Just as BASIC! can infer the Let command from a line that
starts with a variable, it can infer the Call command from a line that starts with a function name.

For example, if you have defined a function like this:

Fn.def MyFunction(x, y$, z)
 < your code here >
Fn.end

You can execute the function, ignoring its return value, with either of these statements:

Call MyFunction(a, b$, c)
MyFunction(a, b$, c)

As with Let, you must use Call if your function name starts with a BASIC! command keyword. It is also
a little faster to execute a function with Call than to make BASIC! infer the command. See Let for
details.

Page 186 of 209 Basic! Language Reference 2023-09-05
50 Appendix - Supported media formats
This document describes the media codec, container, and network protocol support provided by the
Android platform.

The tables below describe the media format support built into the Android platform. YES means the
format is available on handhelds and tablets running all Android versions. Where a specific Android
platform is specified, the format is available on handsets and tablets running that version and all later
versions. The format might also be available in earlier versions, but this is not guaranteed. On form
factors other than handsets and tablets, media format support may vary.

Note that a particular mobile device might support additional formats or file types that are not listed in
these tables. In addition, if you use a Media Codec directly, you can access any of the available media
formats regardless of the supported file types and container formats.

50.1 Audio support

Format Encoder Decoder Details
File Types

Container Formats

AAC LC YES YES Support for
mono/stereo/5.0/5.1 content
with standard sampling rates
from 8 to 48 kHz.

• 3GPP (.3gp)
• MPEG-4 (.mp4, .m4a)
• ADTS raw AAC (.aac,
decode in Android 3.1+,
encode in Android 4.0+,
ADIF not supported)
• MPEG-TS (.ts, not
seekable, Android 3.0+)

HE-AACv1
(AAC+)

Android
4.1+

YES

HE-AACv2
(enhanced

AAC+)

YES Support for stereo/5.0/5.1
content with standard
sampling rates from 8 to 48
kHz.

xHE-AAC Android 9+ Support for up to 8ch content
with standard sampling rates
from 8 to 48 kHz

AAC ELD
(enhanced
low delay

AAC)

Android
4.1+

Android
4.1+

Support for mono/stereo
content with standard
sampling rates from 16 to 48
kHz

AMR-NB YES YES 4.75 to 12.2 kbps sampled @
8kHz

• 3GPP (.3gp)
• AMR (.amr)

AMR-WB YES YES 9 rates from 6.60 kbit/s to
23.85 kbit/s sampled @ 16kHz

FLAC Android
4.1+

Android
3.1+

Mono/Stereo (no
multichannel). Sample rates
up to 48 kHz (but up to 44.1
kHz is recommended on
devices with 44.1 kHz output,
as the 48 to 44.1 kHz
downsampler does not include
a low-pass filter). 16-bit
recommended; no dither
applied for 24-bit.

• FLAC (.flac)
• MPEG-4 (.mp4, .m4a,
Android 10+)

MIDI YES MIDI Type 0 and 1. DLS
Version 1 and 2. XMF and

• Type 0 and 1
(.mid, .xmf, .mxmf)

2023-09-05 Basic! Language Reference Page 187 of 209
Mobile XMF. Support for
ringtone formats RTTTL/RTX,
OTA, and iMelody

• RTTTL/RTX (.rtttl, .rtx)
• OTA (.ota)
• iMelody (.imy)

MP3 YES Mono/Stereo 8-320Kbps
constant (CBR) or variable bit-
rate (VBR)

• MP3 (.mp3)
• MPEG-4 (.mp4, .m4a,
Android 10+)
• Matroska (.mkv,
Android 10+)

Opus Android
10+

Android
5.0+

• Ogg (.ogg)
• Matroska (.mkv)

PCM/WAVE Android
4.1+

YES 8- and 16-bit linear PCM (rates
up to limit of hardware).
Sampling rates for raw PCM
recordings at 8000, 16000 and
44100 Hz.

WAVE (.wav)

Vorbis YES • Ogg (.ogg)
• Matroska (.mkv,
Android 4.0+)
• MPEG-4 (.mp4, .m4a,
Android 10+)

Page 188 of 209 Basic! Language Reference 2023-09-05
51 Appendix - urlencoded

Form content type: application/x-www-form-urlencoded

This is the default content type. Forms submitted with this content type must be encoded as follows:

1. Control names and values are escaped. Space characters are replaced by "+", and then
reserved characters are escaped as described in [RFC1738], section 2.2. Non-printing
characters are replaced by "%HH", a percent sign and two hexadecimals representing the ASCII
code of the character. Line breaks are represented as "CR LF" pairs (i.e., "%0D%0A").

2. The control names/values are listed in the order they appear in the document. The name is
separated from the value by "=" and name/value pairs are separated from each other by "&".

https://www.w3.org/TR/html4/references.html#ref-RFC1738

2023-09-05 Basic! Language Reference Page 189 of 209
52 Appendix – Formatter

51 Appendix – Formatter...184
51.1 Formatter...184
51.2 Format String Syntax..185
51.3 Conversions..186

51.3.1 Date/Time Conversions...187
51.3.2 Flags..189
51.3.3 Width..190
51.3.4 Precision..190
51.3.5 Argument Index..190

51.4 Details...190
51.4.1 General..191
51.4.2 Character...192
51.4.3 Numeric..192
51.4.4 Date/Time..201
51.4.5 Percent...203
51.4.6 Line Separator...203
51.4.7 Argument Index..203

52.1 Formatter
An interpreter for printf style format strings. This class provides support for layout justification and
alignment, common formats for numeric, string, and date/time data, and locale-specific output.
Common Java types such as byte, BigDecimal, and Calendar are supported. Limited formatting
customization for arbitrary user types is provided through the Formattable interface.

Formatters are not necessarily safe for multi-threaded access. Thread safety is optional and is the
responsibility of users of methods in this class.

Formatted printing for the Java language is heavily inspired by C's printf. Although the format strings
are similar to C, some customizations have been made to accommodate the Java language and exploit
some of its features. Also, Java formatting is more strict than C's; for example, if a conversion is
incompatible with a flag, an exception will be thrown. In C inapplicable flags are silently ignored. The
format strings are thus intended to be recognizable to C programmers but not necessarily completely
compatible with those in C.

Examples of expected usage:

StringBuilder sb = new StringBuilder();
// Send all output to the Appendable object sb
Formatter formatter = new Formatter(sb, Locale.US);

// Explicit argument indices may be used to re-order output.
formatter.format("%4$2s %3$2s %2$2s %1$2s", "a", "b", "c", "d")
// -> " d c b a"

// Optional locale as the first argument can be used to get
// locale-specific formatting of numbers. The precision and width can be
// given to round and align the value.
formatter.format(Locale.FRANCE, "e = %+10.4f", Math.E);
// -> "e = +2,7183"

// The '(' numeric flag may be used to format negative numbers with
// parentheses rather than a minus sign. Group separators are
// automatically inserted.
formatter.format("Amount gained or lost since last statement: $ %(,.2f",

Page 190 of 209 Basic! Language Reference 2023-09-05
balanceDelta);
// -> "Amount gained or lost since last statement: $ (6,217.58)"

Convenience methods for common formatting requests exist as illustrated by the following invocations:

// Writes a formatted string to System.out.
System.out.format("Local time: %tT", Calendar.getInstance());
// -> "Local time: 13:34:18"

// Writes formatted output to System.err.
System.err.printf("Unable to open file '%1$s': %2$s",
fileName, exception.getMessage());
// -> "Unable to open file 'food': No such file or directory"

Like C's sprintf(3), Strings may be formatted using the static method String.format:

// Format a string containing a date.
import java.util.Calendar;
import java.util.GregorianCalendar;
import static java.util.Calendar.*;

Calendar c = new GregorianCalendar(1995, MAY, 23);
String s = String.format("Duke's Birthday: %1$tb %1$te, %1$tY", c);
// -> s == "Duke's Birthday: May 23, 1995"

52.2 Format String Syntax
Every method which produces formatted output requires a format string and an argument list. The
format string is a String which may contain fixed text and one or more embedded format specifiers.
Consider the following example:

Calendar c = ...;
String s = String.format("Duke's Birthday: %1$tm %1$te,%1$tY", c);

This format string is the first argument to the format method. It contains three format specifiers
"%1$tm", "%1$te", and "%1$tY" which indicate how the arguments should be processed and where
they should be inserted in the text. The remaining portions of the format string are fixed text including
"Dukes Birthday: " and any other spaces or punctuation. The argument list consists of all
arguments passed to the method after the format string. In the above example, the argument list is of
size one and consists of the Calendar object c.

The format specifiers for general, character, and numeric types have the following syntax:

%[argument_index$][flags][width][.precision]conversion

The optional argument_index is a decimal integer indicating the position of the argument in the
argument list. The first argument is referenced by "1$", the second by "2$", etc.

The optional flags is a set of characters that modify the output format. The set of valid flags depends
on the conversion.

The optional width is a positive decimal integer indicating the minimum number of characters to be
written to the output.

The optional precision is a non-negative decimal integer usually used to restrict the number of
characters. The specific behavior depends on the conversion.

The required conversion is a character indicating how the argument should be formatted. The set of
valid conversions for a given argument depends on the argument's data type.

The format specifiers for types which are used to represents dates and times have the following syntax:

2023-09-05 Basic! Language Reference Page 191 of 209
%[argument_index$][flags][width]conversion

The optional argument_index, flags and width are defined as above.

The required conversion is a two character sequence. The first character is 't' or 'T'. The second
character indicates the format to be used. These characters are similar to but not completely identical
to those defined by GNU date and POSIX strftime(3c).

The format specifiers which do not correspond to arguments have the following syntax:

%[flags][width]conversion

The optional flags and width is defined as above.

The required conversion is a character indicating content to be inserted in the output.

52.3 Conversions
Conversions are divided into the following categories:

1. General - may be applied to any argument type.

2. Character - may be applied to basic types which represent Unicode characters: char,
Character, byte, Byte, short, and Short. This conversion may also be applied to the
types int and Integer when Character.isValidCodePoint(int) returns true.

3. Numeric

1. Integral - may be applied to Java integral types: byte, Byte, short, Short, int and
Integer, long, Long, and BigInteger (but not char or Character).

2. Floating Point - may be applied to Java floating-point types: float, Float, double,
Double, and BigDecimal.

4. Date/Time - may be applied to Java types which are capable of encoding a date or time: long,
Long, Calendar, Date and TemporalAccessor.

5. Percent - produces a literal '%' ('\u0025').

6. Line Separator - produces the platform-specific line separator.

The following table summarizes the supported conversions. Conversions denoted by an upper-case
character (i.e. 'B', 'H', 'S', 'C', 'X', 'E', 'G', 'A', and 'T') are the same as those for the
corresponding lower-case conversion characters except that the result is converted to upper case
according to the rules of the prevailing Locale. The result is equivalent to the following invocation of
String.toUpperCase().

out.toUpperCase()

Conversion
Argument
Category

Description

'b', 'B' general If the argument arg is null, then the result is "false". If arg is a
boolean or Boolean, then the result is the string returned by
String.valueOf(arg). Otherwise, the result is "true".

Page 192 of 209 Basic! Language Reference 2023-09-05
'h', 'H' general If the argument arg is null, then the result is "null". Otherwise, the

result is obtained by invoking
Integer.toHexString(arg.hashCode()).

's', 'S' general If the argument arg is null, then the result is "null". If arg
implements Formattable, then arg.formatTo is invoked.
Otherwise, the result is obtained by invoking arg.toString().

'c', 'C' character The result is a Unicode character.

'd' integral The result is formatted as a decimal integer.

'o' integral The result is formatted as an octal integer.

'x', 'X' integral The result is formatted as a hexadecimal integer.

'e', 'E' floating
point

The result is formatted as a decimal number in computerized scientific
notation.

'f' floating
point

The result is formatted as a decimal number.

'g', 'G' floating
point

The result is formatted using computerized scientific notation or decimal
format, depending on the precision and the value after rounding.

'a', 'A' floating
point

The result is formatted as a hexadecimal floating-point number with a
significand and an exponent. This conversion is not supported for the
BigDecimal type despite the latter's being in the floating point
argument category.

't', 'T' date/time Prefix for date and time conversion characters. See Date/Time
Conversions.

'%' percent The result is a literal '%' ('\u0025').

'n' line
separator

The result is the platform-specific line separator.

Any characters not explicitly defined as conversions are illegal and are reserved for future extensions.

52.3.1 Date/Time Conversions

The following date and time conversion suffix characters are defined for the 't' and 'T' conversions.
The types are similar to but not completely identical to those defined by GNU date and POSIX
strftime(3c). Additional conversion types are provided to access Java-specific functionality (e.g.
'L' for milliseconds within the second).

The following conversion characters are used for formatting times:

'H' Hour of the day for the 24-hour clock, formatted as two digits with a leading zero as necessary
i.e. 00 - 23.

'I' Hour for the 12-hour clock, formatted as two digits with a leading zero as necessary, i.e. 01 -

2023-09-05 Basic! Language Reference Page 193 of 209
12.

'k' Hour of the day for the 24-hour clock, i.e. 0 - 23.

'l' Hour for the 12-hour clock, i.e. 1 - 12.

'M' Minute within the hour formatted as two digits with a leading zero as necessary, i.e. 00 - 59.

'S' Seconds within the minute, formatted as two digits with a leading zero as necessary, i.e. 00 -
60 ("60" is a special value required to support leap seconds).

'L' Millisecond within the second formatted as three digits with leading zeros as necessary, i.e.
000 - 999.

'N' Nanosecond within the second, formatted as nine digits with leading zeros as necessary, i.e.
000000000 - 999999999.

'p' Locale-specific morning or afternoon marker in lower case, e.g."am" or "pm". Use of the
conversion prefix 'T' forces this output to upper case.

'z' RFC 822 style numeric time zone offset from GMT, e.g. -0800. This value will be adjusted as
necessary for Daylight Saving Time. For long, Long, and Date the time zone used is the
default time zone for this instance of the Java virtual machine.

'Z' A string representing the abbreviation for the time zone. This value will be adjusted as
necessary for Daylight Saving Time. For long, Long, and Date the time zone used is the
default time zone for this instance of the Java virtual machine. The Formatter's locale will
supersede the locale of the argument (if any).

's' Seconds since the beginning of the epoch starting at 1 January 1970 00:00:00 UTC, i.e.
Long.MIN_VALUE/1000 to Long.MAX_VALUE/1000.

'Q' Milliseconds since the beginning of the epoch starting at 1 January 1970 00:00:00 UTC, i.e.
Long.MIN_VALUE to Long.MAX_VALUE.

The following conversion characters are used for formatting dates:

'B' Locale-specific full month name, e.g. "January", "February".

'b' Locale-specific abbreviated month name, e.g. "Jan", "Feb".

'h' Same as 'b'.

'A' Locale-specific full name of the day of the week, e.g. "Sunday", "Monday".

'a' Locale-specific short name of the day of the week, e.g. "Sun", "Mon".

'C' Four-digit year divided by 100, formatted as two digits with leading zero as necessary, i.e. 00
- 99.

'Y' Year, formatted as at least four digits with leading zeros as necessary, e.g. 0092 equals 92 CE
for the Gregorian calendar.

'y' Last two digits of the year, formatted with leading zeros as necessary, i.e. 00 - 99.

http://www.ietf.org/rfc/rfc0822.txt

Page 194 of 209 Basic! Language Reference 2023-09-05
'j' Day of year, formatted as three digits with leading zeros as necessary, e.g. 001 - 366 for the

Gregorian calendar.

'm' Month, formatted as two digits with leading zeros as necessary, i.e. 01 - 13.

'd' Day of month, formatted as two digits with leading zeros as necessary, i.e. 01 - 31.

'e' Day of month, formatted as two digits, i.e. 1 - 31.

The following conversion characters are used for formatting common date/time compositions.

'R' Time formatted for the 24-hour clock as "%tH:%tM".

'T' Time formatted for the 24-hour clock as "%tH:%tM:%tS".

'r' Time formatted for the 12-hour clock as "%tI:%tM:%tS %Tp". The location of the morning
or afternoon marker ('%Tp') may be locale-dependent.

'D' Date formatted as "%tm/%td/%ty".

'F' ISO 8601 complete date formatted as "%tY-%tm-%td".

'c' Date and time formatted as "%ta %tb %td %tT %tZ %tY", e.g. "Sun Jul 20 16:17:00
EDT 1969".

Any characters not explicitly defined as date/time conversion suffixes are illegal and are reserved for
future extensions.

52.3.2 Flags

The following table summarizes the supported flags. y means the flag is supported for the indicated
argument types.

Flag General Character Integral
Floating

Point
Date/
Time

Description

'-' y y y y y The result will be left-justified.

'#' y1 - y3 y - The result should use a conversion-
dependent alternate form.

'+' - - y4 y - The result will always include a sign.

' '
- - y4 y - The result will include a leading space for

positive values.

'0' - - y y - The result will be zero-padded.

','
- - y2 y5 - The result will include locale-specific

grouping separators.

'('
- - y4 y5

-
The result will enclose negative numbers
in parentheses.

http://www.w3.org/TR/NOTE-datetime

2023-09-05 Basic! Language Reference Page 195 of 209
1 Depends on the definition of Formattable.

2 For 'd' conversion only.

3 For 'o', 'x', and 'X' conversions only.

4 For 'd', 'o', 'x', and 'X' conversions applied to BigInteger or 'd' applied to byte, Byte,
short, Short, int and Integer, long, and Long.

5 For 'e', 'E', 'f', 'g', and 'G' conversions only.

Any characters not explicitly defined as flags are illegal and are reserved for future extensions.

52.3.3 Width

The width is the minimum number of characters to be written to the output. For the line separator
conversion, width is not applicable; if it is provided, an exception will be thrown.

52.3.4 Precision

For general argument types, the precision is the maximum number of characters to be written to the
output.

For the floating-point conversions 'a', 'A', 'e', 'E', and 'f' the precision is the number of digits
after the radix point. If the conversion is 'g' or 'G', then the precision is the total number of digits in
the resulting magnitude after rounding.

For character, integral, and date/time argument types and the percent and line separator conversions,
the precision is not applicable; if a precision is provided, an exception will be thrown.

52.3.5 Argument Index

The argument index is a decimal integer indicating the position of the argument in the argument list.
The first argument is referenced by "1$", the second by "2$", etc.

Another way to reference arguments by position is to use the '<' ('\u003c') flag, which causes the
argument for the previous format specifier to be re-used. For example, the following two statements
would produce identical strings:

Calendar c = ...;
String s1 = String.format("Duke's Birthday: %1$tm %1$te,%1$tY", c);

String s2 = String.format("Duke's Birthday: %1$tm %<te,%<tY", c);

52.4 Details
This section is intended to provide behavioral details for formatting, including conditions and
exceptions, supported data types, localization, and interactions between flags, conversions, and data
types.

Any characters not explicitly defined as conversions, date/time conversion suffixes, or flags are illegal
and are reserved for future extensions. Use of such a character in a format string will cause an
UnknownFormatConversionException or UnknownFormatFlagsException to be thrown.

If the format specifier contains a width or precision with an invalid value or which is otherwise
unsupported, then a IllegalFormatWidthException or IllegalFormatPrecisionException
respectively will be thrown.

If a format specifier contains a conversion character that is not applicable to the corresponding

Page 196 of 209 Basic! Language Reference 2023-09-05
argument, then an IllegalFormatConversionException will be thrown.

All specified exceptions may be thrown by any of the format methods of Formatter as well as by
any format convenience methods such as String.format and PrintStream.printf.

Conversions denoted by an upper-case character (i.e. 'B', 'H', 'S', 'C', 'X', 'E', 'G', 'A', and
'T') are the same as those for the corresponding lower-case conversion characters except that the
result is converted to upper case according to the rules of the prevailing Locale. The result is
equivalent to the following invocation of String#toUpperCase().

 out.toUpperCase()

52.4.1 General

The following general conversions may be applied to any argument type:

'b' '\u0062' Produces either "true" or "false" as returned by
Boolean#toString(boolean).

If the argument is null, then the result is "false". If the argument is a boolean
or Boolean, then the result is the string returned by String.valueOf().
Otherwise, the result is "true".

If the '#' flag is given, then a
FormatFlagsConversionMismatchException will be thrown.

'B' '\u0042' The upper-case variant of 'b'.

'h' '\u0068' Produces a string representing the hash code value of the object.

If the argument, arg is null, then the result is "null". Otherwise, the result is
obtained by invoking Integer.toHexString(arg.hashCode()).

If the '#' flag is given, then a
FormatFlagsConversionMismatchException will be thrown.

'H' '\u0048' The upper-case variant of 'h'.

's' '\u0073' Produces a string.

If the argument is null, then the result is "null". If the argument implements
Formattable, then its formatTo method is invoked. Otherwise, the result is
obtained by invoking the argument's toString() method.

If the '#' flag is given and the argument is not a Formattable , then a
FormatFlagsConversionMismatchException will be thrown.

'S' '\u0053' The upper-case variant of 's'.

The following flags apply to general conversions:

'-' '\u002d' Left justifies the output. Spaces ('\u0020') will be added at the end of the
converted value as required to fill the minimum width of the field. If the width is

2023-09-05 Basic! Language Reference Page 197 of 209

not provided, then a MissingFormatWidthException will be thrown. If this
flag is not given then the output will be right-justified.

'#' '\u0023' Requires the output use an alternate form. The definition of the form is specified
by the conversion.

The width is the minimum number of characters to be written to the output. If the length of the
converted value is less than the width then the output will be padded by ' ' ('\u0020') until the total
number of characters equals the width. The padding is on the left by default. If the '-' flag is given,
then the padding will be on the right. If the width is not specified then there is no minimum.

The precision is the maximum number of characters to be written to the output. The precision is
applied before the width, thus the output will be truncated to precision characters even if the width is
greater than the precision. If the precision is not specified then there is no explicit limit on the number
of characters.

52.4.2 Character

This conversion may be applied to char and Character. It may also be applied to the types byte,
Byte, short, and Short, int and Integer when Character#isValidCodePoint returns true.
If it returns false then an IllegalFormatCodePointException will be thrown.

'c' '\u0063' Formats the argument as a Unicode character as described in Unicode Character
Representation. This may be more than one 16-bit char in the case where the
argument represents a supplementary character.

If the '#' flag is given, then a
FormatFlagsConversionMismatchException will be thrown.

'C' '\u0043' The upper-case variant of 'c'.

The '-' flag defined for General conversions applies. If the '#' flag is given, then a
FormatFlagsConversionMismatchException will be thrown.

The width is defined as for General conversions.

The precision is not applicable. If the precision is specified then an
IllegalFormatPrecisionException will be thrown.

52.4.3 Numeric

Numeric conversions are divided into the following categories:

1. Byte, Short, Integer, and Long

2. BigInteger

3. Float and Double

4. BigDecimal

Numeric types will be formatted according to the following algorithm:

Number Localization Algorithm

After digits are obtained for the integer part, fractional part, and exponent (as appropriate for the data

Page 198 of 209 Basic! Language Reference 2023-09-05
type), the following transformation is applied:

1. Each digit character d in the string is replaced by a locale-specific digit computed relative to the
current locale's zero digit z; that is d - '0' + z.

2. If a decimal separator is present, a locale-specific decimal separator is substituted.

3. If the ',' ('\u002c') flag is given, then the locale-specific grouping separator is inserted by
scanning the integer part of the string from least significant to most significant digits and
inserting a separator at intervals defined by the locale's grouping size.

4. If the '0' flag is given, then the locale-specific zero digits are inserted after the sign character, if
any, and before the first non-zero digit, until the length of the string is equal to the requested
field width.

5. If the value is negative and the '(' flag is given, then a '(' ('\u0028') is prepended and a
')' ('\u0029') is appended.

6. If the value is negative (or floating-point negative zero) and '(' flag is not given, then a '-' ('\
u002d') is prepended.

7. If the '+' flag is given and the value is positive or zero (or floating-point positive zero), then a
'+' ('\u002b') will be prepended.

If the value is NaN or positive infinity the literal strings "NaN" or "Infinity" respectively, will be output. If
the value is negative infinity, then the output will be "(Infinity)" if the '(' flag is given otherwise the
output will be "-Infinity". These values are not localized.

Byte, Short, Integer, and Long

The following conversions may be applied to byte, Byte, short, Short, int and Integer, long,
and Long.

'd' '\u0064' Formats the argument as a decimal integer. The localization algorithm is applied.
If the '0' flag is given and the value is negative, then the zero padding will occur
after the sign.

If the '#' flag is given then a FormatFlagsConversionMismatchException
will be thrown.

'o' '\u006f' Formats the argument as an integer in base eight. No localization is applied.

If x is negative then the result will be an unsigned value generated by adding 2n
to the value where n is the number of bits in the type as returned by the static
SIZE field in the Byte, Short, Integer, or Long classes as appropriate.

If the '#' flag is given then the output will always begin with the radix indicator
'0'.

If the '0' flag is given then the output will be padded with leading zeros to the
field width following any indication of sign.

If '(', '+', ' ', or ',' flags are given then a
FormatFlagsConversionMismatchException will be thrown.

'x' '\u0078' Formats the argument as an integer in base sixteen. No localization is applied.

2023-09-05 Basic! Language Reference Page 199 of 209
If x is negative then the result will be an unsigned value generated by adding 2n
to the value where n is the number of bits in the type as returned by the static
SIZE field in the Byte, Short, Integer, or Long classes as appropriate.

If the '#' flag is given then the output will always begin with the radix indicator
"0x".

If the '0' flag is given then the output will be padded to the field width with
leading zeros after the radix indicator or sign (if present).

If '(', ' ', '+', or ',' flags are given then a
FormatFlagsConversionMismatchException will be thrown.

'X' '\u0058' The upper-case variant of 'x'. The entire string representing the number will be
converted to upper case including the 'x' (if any) and all hexadecimal digits 'a'
- 'f' ('\u0061' - '\u0066').

If the conversion is 'o', 'x', or 'X' and both the '#' and the '0' flags are given, then result will
contain the radix indicator ('0' for octal and "0x" or "0X" for hexadecimal), some number of zeros
(based on the width), and the value.

If the '-' flag is not given, then the space padding will occur before the sign.

The following flags apply to numeric integral conversions:

'+' '\u002b' Requires the output to include a positive sign for all positive numbers. If this flag
is not given then only negative values will include a sign.

If both the '+' and ' ' flags are given then an
IllegalFormatFlagsException will be thrown.

' ' '\u0020' Requires the output to include a single extra space ('\u0020') for non-negative
values.

If both the '+' and ' ' flags are given then an
IllegalFormatFlagsException will be thrown.

'0' '\u0030' Requires the output to be padded with leading zeros to the minimum field width
following any sign or radix indicator except when converting NaN or infinity. If
the width is not provided, then a MissingFormatWidthException will be
thrown.

If both the '-' and '0' flags are given then an
IllegalFormatFlagsException will be thrown.

',' '\u002c' Requires the output to include the locale-specific group separators as described
in the "group" section of the localization algorithm.

'(' '\u0028' Requires the output to prepend a '(' ('\u0028') and append a ')' ('\
u0029') to negative values.

Page 200 of 209 Basic! Language Reference 2023-09-05
If no flags are given the default formatting is as follows:

• The output is right-justified within the width.

• Negative numbers begin with a '-' ('\u002d').

• Positive numbers and zero do not include a sign or extra leading space.

• No grouping separators are included.

The width is the minimum number of characters to be written to the output. This includes any signs,
digits, grouping separators, radix indicator, and parentheses. If the length of the converted value is less
than the width then the output will be padded by spaces ('\u0020') until the total number of
characters equals width. The padding is on the left by default. If '-' flag is given then the padding will
be on the right. If width is not specified then there is no minimum.

The precision is not applicable. If precision is specified then an
IllegalFormatPrecisionException will be thrown.

BigInteger

The following conversions may be applied to BigInteger.

'd' '\u0064' Requires the output to be formatted as a decimal integer. The localization
algorithm is applied.

If the '#' flag is given FormatFlagsConversionMismatchException will be
thrown.

'o' '\u006f' Requires the output to be formatted as an integer in base eight. No localization is
applied.

If x is negative then the result will be a signed value beginning with '-' ('\
u002d'). Signed output is allowed for this type because unlike the primitive
types it is not possible to create an unsigned equivalent without assuming an
explicit data-type size.

If x is positive or zero and the '+' flag is given then the result will begin with '+'
('\u002b').

If the '#' flag is given then the output will always begin with '0' prefix.

If the '0' flag is given then the output will be padded with leading zeros to the
field width following any indication of sign.

If the ',' flag is given then a FormatFlagsConversionMismatchException
will be thrown.

'x' '\u0078' Requires the output to be formatted as an integer in base sixteen. No localization
is applied.

If x is negative then the result will be a signed value beginning with '-' ('\
u002d'). Signed output is allowed for this type because unlike the primitive
types it is not possible to create an unsigned equivalent without assuming an
explicit data-type size.

If x is positive or zero and the '+' flag is given then the result will begin with '+'

2023-09-05 Basic! Language Reference Page 201 of 209
('\u002b').

If the '#' flag is given then the output will always begin with the radix indicator
"0x".

If the '0' flag is given then the output will be padded to the field width with
leading zeros after the radix indicator or sign (if present).

If the ',' flag is given then a FormatFlagsConversionMismatchException
will be thrown.

'X' '\u0058' The upper-case variant of 'x'. The entire string representing the number will be
converted to upper case including the 'x' (if any) and all hexadecimal digits 'a'
- 'f' ('\u0061' - '\u0066').

If the conversion is 'o', 'x', or 'X' and both the '#' and the '0' flags are given, then result will
contain the base indicator ('0' for octal and "0x" or "0X" for hexadecimal), some number of zeros
(based on the width), and the value.

If the '0' flag is given and the value is negative, then the zero padding will occur after the sign.

If the '-' flag is not given, then the space padding will occur before the sign.

All flags defined for Byte, Short, Integer, and Long apply. The default behavior when no flags are given
is the same as for Byte, Short, Integer, and Long.

The specification of width is the same as defined for Byte, Short, Integer, and Long.

The precision is not applicable. If precision is specified then an
IllegalFormatPrecisionException will be thrown.

Float and Double

The following conversions may be applied to float, Float, double and Double.

'e' '\u0065' Requires the output to be formatted using computerized scientific notation. The
localization algorithm is applied.

The formatting of the magnitude m depends upon its value.

If m is NaN or infinite, the literal strings "NaN" or "Infinity", respectively, will be
output. These values are not localized.

If m is positive-zero or negative-zero, then the exponent will be "+00".

Otherwise, the result is a string that represents the sign and magnitude (absolute
value) of the argument. The formatting of the sign is described in the localization
algorithm. The formatting of the magnitude m depends upon its value.

Let n be the unique integer such that 10n <= m < 10n+1; then let a be the
mathematically exact quotient of m and 10n so that 1 <= a < 10. The magnitude
is then represented as the integer part of a, as a single decimal digit, followed by
the decimal separator followed by decimal digits representing the fractional part of
a, followed by the lower-case locale-specific exponent separator (e.g. 'e'),
followed by the sign of the exponent, followed by a representation of n as a

Page 202 of 209 Basic! Language Reference 2023-09-05
decimal integer, as produced by the method Long#toString(long, int),
and zero-padded to include at least two digits.

The number of digits in the result for the fractional part of m or a is equal to the
precision. If the precision is not specified then the default value is 6. If the
precision is less than the number of digits which would appear after the decimal
point in the string returned by Float#toString(float) or
Double.toString(double) respectively, then the value will be rounded using
the round half up algorithm. Otherwise, zeros may be appended to reach the
precision. For a canonical representation of the value, use
Float.toString(float) or Double#toString(double) as appropriate.

If the ',' flag is given, then an
FormatFlagsConversionMismatchException will be thrown.

'E' '\u0045' The upper-case variant of 'e'. The exponent symbol will be the upper-case
locale-specific exponent separator (e.g. 'E').

'g' '\u0067' Requires the output to be formatted in general scientific notation as described
below. The localization algorithm is applied.

After rounding for the precision, the formatting of the resulting magnitude m
depends on its value.

If m is greater than or equal to 10-4 but less than 10precision then it is represented
in decimal format.

If m is less than 10-4 or greater than or equal to 10precision, then it is represented
in computerized scientific notation.

The total number of significant digits in m is equal to the precision. If the
precision is not specified, then the default value is 6. If the precision is 0, then it
is taken to be 1.

If the '#' flag is given then an
FormatFlagsConversionMismatchException will be thrown.

'G' '\u0047' The upper-case variant of 'g'.

'f' '\u0066' Requires the output to be formatted using decimal format. The localization
algorithm is applied.

The result is a string that represents the sign and magnitude (absolute value) of
the argument. The formatting of the sign is described in the localization
algorithm. The formatting of the magnitude m depends upon its value.

If m NaN or infinite, the literal strings "NaN" or "Infinity", respectively, will be
output. These values are not localized.

The magnitude is formatted as the integer part of m, with no leading zeroes,
followed by the decimal separator followed by one or more decimal digits
representing the fractional part of m.

The number of digits in the result for the fractional part of m or a is equal to the
precision. If the precision is not specified then the default value is 6. If the
precision is less than the number of digits which would appear after the decimal
point in the string returned by Float#toString(float) or

2023-09-05 Basic! Language Reference Page 203 of 209
Double.toString(double) respectively, then the value will be rounded using
the round half up algorithm. Otherwise, zeros may be appended to reach the
precision. For a canonical representation of the value, use
Float.toString(float) or Double#toString(double) as appropriate.

'a' '\u0061' Requires the output to be formatted in hexadecimal exponential form. No
localization is applied.

The result is a string that represents the sign and magnitude (absolute value) of
the argument x.

If x is negative or a negative-zero value then the result will begin with '-' ('\
u002d').

If x is positive or a positive-zero value and the '+' flag is given then the result will
begin with '+' ('\u002b').

The formatting of the magnitude m depends upon its value.

• If the value is NaN or infinite, the literal strings "NaN" or "Infinity",
respectively, will be output.

• If m is zero then it is represented by the string "0x0.0p0".

• If m is a double value with a normalized representation then substrings
are used to represent the significand and exponent fields. The significand
is represented by the characters "0x1." followed by the hexadecimal
representation of the rest of the significand as a fraction. The exponent is
represented by 'p' ('\u0070') followed by a decimal string of the
unbiased exponent as if produced by invoking Integer.toString on
the exponent value. If the precision is specified, the value is rounded to
the given number of hexadecimal digits.

• If m is a double value with a subnormal representation then, unless the
precision is specified to be in the range 1 through 12, inclusive, the
significand is represented by the characters '0x0.' followed by the
hexadecimal representation of the rest of the significand as a fraction, and
the exponent represented by 'p-1022'. If the precision is in the interval
[1, 12], the subnormal value is normalized such that it begins with the
characters '0x1.', rounded to the number of hexadecimal digits of
precision, and the exponent adjusted accordingly. Note that there must be
at least one nonzero digit in a subnormal significand.

If the '(' or ',' flags are given, then a
FormatFlagsConversionMismatchException will be thrown.

'A' '\u0041' The upper-case variant of 'a'. The entire string representing the number will be
converted to upper case including the 'x' ('\u0078') and 'p' ('\u0070' and
all hexadecimal digits 'a' - 'f' ('\u0061' - '\u0066').

All flags defined for Byte, Short, Integer, and Long apply.

If the '#' flag is given, then the decimal separator will always be present.

If no flags are given the default formatting is as follows:

Page 204 of 209 Basic! Language Reference 2023-09-05
• The output is right-justified within the width.

• Negative numbers begin with a '-'.

• Positive numbers and positive zero do not include a sign or extra leading space.

• No grouping separators are included.

• The decimal separator will only appear if a digit follows it.

The width is the minimum number of characters to be written to the output. This includes any signs,
digits, grouping separators, decimal separators, exponential symbol, radix indicator, parentheses, and
strings representing infinity and NaN as applicable. If the length of the converted value is less than the
width then the output will be padded by spaces ('\u0020') until the total number of characters equals
width. The padding is on the left by default. If the '-' flag is given then the padding will be on the
right. If width is not specified then there is no minimum.

If the conversion is 'e', 'E' or 'f', then the precision is the number of digits after the decimal
separator. If the precision is not specified, then it is assumed to be 6.

If the conversion is 'g' or 'G', then the precision is the total number of significant digits in the
resulting magnitude after rounding. If the precision is not specified, then the default value is 6. If the
precision is 0, then it is taken to be 1.

If the conversion is 'a' or 'A', then the precision is the number of hexadecimal digits after the radix
point. If the precision is not provided, then all of the digits as returned by
Double.toHexString(double) will be output.

BigDecimal

The following conversions may be applied BigDecimal.

'e' '\u0065' Requires the output to be formatted using computerized scientific notation. The
localization algorithm is applied.

The formatting of the magnitude m depends upon its value.

If m is positive-zero or negative-zero, then the exponent will be "+00".

Otherwise, the result is a string that represents the sign and magnitude (absolute
value) of the argument. The formatting of the sign is described in the localization
algorithm. The formatting of the magnitude m depends upon its value.

Let n be the unique integer such that 10n <= m < 10n+1; then let a be the
mathematically exact quotient of m and 10n so that 1 <= a < 10. The magnitude
is then represented as the integer part of a, as a single decimal digit, followed by
the decimal separator followed by decimal digits representing the fractional part of
a, followed by the exponent symbol 'e' ('\u0065'), followed by the sign of the
exponent, followed by a representation of n as a decimal integer, as produced by
the method Long#toString(long, int), and zero-padded to include at least
two digits.

The number of digits in the result for the fractional part of m or a is equal to the
precision. If the precision is not specified then the default value is 6. If the
precision is less than the number of digits to the right of the decimal point then the
value will be rounded using the round half up algorithm. Otherwise, zeros may be
appended to reach the precision. For a canonical representation of the value,

2023-09-05 Basic! Language Reference Page 205 of 209
use BigDecimal.toString().

If the ',' flag is given, then an
FormatFlagsConversionMismatchException will be thrown.

'E' '\u0045' The upper-case variant of 'e'. The exponent symbol will be 'E' ('\u0045').

'g' '\u0067' Requires the output to be formatted in general scientific notation as described
below. The localization algorithm is applied.

After rounding for the precision, the formatting of the resulting magnitude m
depends on its value.

If m is greater than or equal to 10-4 but less than 10precision then it is represented
in decimal format.

If m is less than 10-4 or greater than or equal to 10precision, then it is represented
in computerized scientific notation.

The total number of significant digits in m is equal to the precision. If the
precision is not specified, then the default value is 6. If the precision is 0, then it
is taken to be 1.

If the '#' flag is given then an
FormatFlagsConversionMismatchException will be thrown.

'G' '\u0047' The upper-case variant of 'g'.

'f' '\u0066' Requires the output to be formatted using decimal format. The localization
algorithm is applied.

The result is a string that represents the sign and magnitude (absolute value) of
the argument. The formatting of the sign is described in the localization
algorithm. The formatting of the magnitude m depends upon its value.

The magnitude is formatted as the integer part of m, with no leading zeroes,
followed by the decimal separator followed by one or more decimal digits
representing the fractional part of m.

The number of digits in the result for the fractional part of m or a is equal to the
precision. If the precision is not specified then the default value is 6. If the
precision is less than the number of digits to the right of the decimal point then the
value will be rounded using the round half up algorithm. Otherwise, zeros may be
appended to reach the precision. For a canonical representation of the value,
use BigDecimal.toString().

All flags defined for Byte, Short, Integer, and Long apply.

If the '#' flag is given, then the decimal separator will always be present.

The default behavior when no flags are given is the same as for Float and Double.

The specification of width and precision is the same as defined for Float and Double.

Page 206 of 209 Basic! Language Reference 2023-09-05
52.4.4 Date/Time

This conversion may be applied to long, Long, Calendar, Date and TemporalAccessor.

't' '\u0074' Prefix for date and time conversion characters.

'T' '\u0054' The upper-case variant of 't'.

The following date and time conversion character suffixes are defined for the 't' and 'T'
conversions. The types are similar to but not completely identical to those defined by GNU date and
POSIX strftime(3c). Additional conversion types are provided to access Java-specific functionality
(e.g. 'L' for milliseconds within the second).

The following conversion characters are used for formatting times:

'H' '\u0048' Hour of the day for the 24-hour clock, formatted as two digits with a leading zero
as necessary i.e. 00 - 23. 00 corresponds to midnight.

'I' '\u0049' Hour for the 12-hour clock, formatted as two digits with a leading zero as
necessary, i.e. 01 - 12. 01 corresponds to one o'clock (either morning or
afternoon).

'k' '\u006b' Hour of the day for the 24-hour clock, i.e. 0 - 23. 0 corresponds to midnight.

'l' '\u006c' Hour for the 12-hour clock, i.e. 1 - 12. 1 corresponds to one o'clock (either
morning or afternoon).

'M' '\u004d' Minute within the hour formatted as two digits with a leading zero as necessary,
i.e. 00 - 59.

'S' '\u0053' Seconds within the minute, formatted as two digits with a leading zero as
necessary, i.e. 00 - 60 ("60" is a special value required to support leap
seconds).

'L' '\u004c' Millisecond within the second formatted as three digits with leading zeros as
necessary, i.e. 000 - 999.

'N' '\u004e' Nanosecond within the second, formatted as nine digits with leading zeros as
necessary, i.e. 000000000 - 999999999. The precision of this value is limited
by the resolution of the underlying operating system or hardware.

'p' '\u0070' Locale-specific morning or afternoon marker in lower case, e.g."am" or "pm". Use
of the conversion prefix 'T' forces this output to upper case. (Note that 'p'
produces lower-case output. This is different from GNU date and POSIX
strftime(3c) which produce upper-case output.)

'z' '\u007a' RFC 822 style numeric time zone offset from GMT, e.g. -0800. This value will be
adjusted as necessary for Daylight Saving Time. For long, Long, and Date the
time zone used is the default time zone for this instance of the Java virtual
machine.

'Z' '\u005a' A string representing the abbreviation for the time zone. This value will be
adjusted as necessary for Daylight Saving Time. For long, Long, and Date the
time zone used is the default time zone for this instance of the Java virtual

http://www.ietf.org/rfc/rfc0822.txt

2023-09-05 Basic! Language Reference Page 207 of 209
machine. The Formatter's locale will supersede the locale of the argument (if
any).

's' '\u0073' Seconds since the beginning of the epoch starting at 1 January 1970 00:00:00
UTC, i.e. Long.MIN_VALUE/1000 to Long.MAX_VALUE/1000.

'Q' '\u004f' Milliseconds since the beginning of the epoch starting at 1 January 1970
00:00:00 UTC, i.e. Long.MIN_VALUE to Long.MAX_VALUE. The precision of
this value is limited by the resolution of the underlying operating system or
hardware.

The following conversion characters are used for formatting dates:

'B' '\u0042' Locale-specific full month name, e.g. "January", "February".

'b' '\u0062' Locale-specific abbreviated month name, e.g. "Jan", "Feb".

'h' '\u0068' Same as 'b'.

'A' '\u0041' Locale-specific full name of the day of the week, e.g. "Sunday", "Monday".

'a' '\u0061' Locale-specific short name of the day of the week, e.g. "Sun", "Mon".

'C' '\u0043' Four-digit year divided by 100, formatted as two digits with leading zero as
necessary, i.e. 00 - 99.

'Y' '\u0059' Year, formatted to at least four digits with leading zeros as necessary, e.g. 0092
equals 92 CE for the Gregorian calendar.

'y' '\u0079' Last two digits of the year, formatted with leading zeros as necessary, i.e. 00 -
99.

'j' '\u006a' Day of year, formatted as three digits with leading zeros as necessary, e.g. 001
- 366 for the Gregorian calendar. 001 corresponds to the first day of the year.

'm' '\u006d' Month, formatted as two digits with leading zeros as necessary, i.e. 01 - 13,
where "01" is the first month of the year and ("13" is a special value required to
support lunar calendars).

'd' '\u0064' Day of month, formatted as two digits with leading zeros as necessary, i.e. 01 -
31, where "01" is the first day of the month.

'e' '\u0065' Day of month, formatted as two digits, i.e. 1 - 31 where "1" is the first day of the
month.

The following conversion characters are used for formatting common date/time compositions.

'R' '\u0052' Time formatted for the 24-hour clock as "%tH:%tM".

'T' '\u0054' Time formatted for the 24-hour clock as "%tH:%tM:%tS".

'r' '\u0072' Time formatted for the 12-hour clock as "%tI:%tM:%tS %Tp". The location of

Page 208 of 209 Basic! Language Reference 2023-09-05
the morning or afternoon marker ('%Tp') may be locale-dependent.

'D' '\u0044' Date formatted as "%tm/%td/%ty".

'F' '\u0046' ISO 8601 complete date formatted as "%tY-%tm-%td".

'c' '\u0063' Date and time formatted as "%ta %tb %td %tT %tZ %tY", e.g. "Sun Jul
20 16:17:00 EDT 1969".

The '-' flag defined for General conversions applies. If the '#' flag is given, then a
FormatFlagsConversionMismatchException will be thrown.

The width is the minimum number of characters to be written to the output. If the length of the
converted value is less than the width then the output will be padded by spaces ('\u0020') until the
total number of characters equals width. The padding is on the left by default. If the '-' flag is given
then the padding will be on the right. If width is not specified then there is no minimum.

The precision is not applicable. If the precision is specified then an
IllegalFormatPrecisionException will be thrown.

52.4.5 Percent

The conversion does not correspond to any argument.

'%' The result is a literal '%' ('\u0025').

The width is the minimum number of characters to be written to the output including the '%'. If
the length of the converted value is less than the width then the output will be padded by
spaces ('\u0020') until the total number of characters equals width. The padding is on the
left. If width is not specified then just the '%' is output.

The '-' flag defined for General conversions applies. If any other flags are provided, then a
FormatFlagsConversionMismatchException will be thrown.

The precision is not applicable. If the precision is specified an
IllegalFormatPrecisionException will be thrown.

52.4.6 Line Separator

The conversion does not correspond to any argument.

'n' The platform-specific line separator as returned by
System.getProperty("line.separator").

Flags, width, and precision are not applicable. If any are provided an
IllegalFormatFlagsException, IllegalFormatWidthException, and
IllegalFormatPrecisionException, respectively will be thrown.

52.4.7 Argument Index

Format specifiers can reference arguments in three ways:

• Explicit indexing is used when the format specifier contains an argument index. The argument

http://www.w3.org/TR/NOTE-datetime

2023-09-05 Basic! Language Reference Page 209 of 209
index is a decimal integer indicating the position of the argument in the argument list. The first
argument is referenced by "1$", the second by "2$", etc. An argument may be referenced more
than once.

For example:

formatter.format("%4$s %3$s %2$s %1$s %4$s %3$s %2$s %1$s",
 "a", "b", "c", "d")
// -> "d c b a d c b a"

• Relative indexing is used when the format specifier contains a '<' ('\u003c') flag which causes
the argument for the previous format specifier to be re-used. If there is no previous argument, then
a MissingFormatArgumentException is thrown.

formatter.format("%s %s %<s %<s", "a", "b", "c", "d")
// -> "a b b b"
// "c" and "d" are ignored because they are not referenced

• Ordinary indexing is used when the format specifier contains neither an argument index nor a '<'
flag. Each format specifier which uses ordinary indexing is assigned a sequential implicit index into
argument list which is independent of the indices used by explicit or relative indexing.

formatter.format("%s %s %s %s", "a", "b", "c", "d")
// -> "a b c d"

It is possible to have a format string which uses all forms of indexing, for example:

formatter.format("%2$s %s %<s %s", "a", "b", "c", "d")
// -> "b a a b"
// "c" and "d" are ignored because they are not referenced

The maximum number of arguments is limited by the maximum dimension of a Java array as defined
by The Java™ Virtual Machine Specification. If the argument index is does not correspond to an
available argument, then a MissingFormatArgumentException is thrown.

If there are more arguments than format specifiers, the extra arguments are ignored.

Unless otherwise specified, passing a null argument to any method or constructor in this class will
cause a NullPointerException to be thrown.

	BASIC! Language Reference
	Table of Contents
	1 Introduction
	1.1 BASIC!
	1.2 About the Cover Art
	1.3 Credits
	1.4 Documentation
	1.4.1 To Do

	2 Basic Syntax
	2.1 Multiple Commands on a Line
	2.2 Line Continuation

	3 Android Device
	3.1 Device
	3.2 Device.language
	3.3 Device.locale
	3.4 Device.OS
	3.5 Phone.info
	3.6 Screen
	3.7 Screen.rotation
	3.8 Screen.size
	3.9 WiFi.info

	4 App Commands
	4.1 App.broadcast
	4.2 App.start

	5 Array Commands
	5.1 Array.average
	5.2 Array.copy
	5.3 Array.delete
	5.4 Array.dims
	5.5 Array.fill
	5.6 Array.length
	5.7 Array.load
	5.8 Array.max
	5.9 Array.min
	5.10 Array.reverse
	5.11 Array.search
	5.12 Array.shuffle
	5.13 Array.sort
	5.14 Array.std_dev
	5.15 Array.sum
	5.16 Array.variance
	5.17 Dim
	5.18 UnDim

	6 Audio Commands
	6.1 Audio.isdone
	6.2 Audio.length
	6.3 Audio.load
	6.4 Audio.loop
	6.5 Audio.pause
	6.6 Audio.play
	6.7 Audio.position.current
	6.8 Audio.position.seek
	6.9 Audio.record.start
	6.10 Audio.record.stop
	6.11 Audio.release
	6.12 Audio.stop
	6.13 Audio.volume

	7 Background Commands and Functions
	7.1 Background
	7.2 Background.resume
	7.3 Home
	7.4 OnBackground:
	7.5 WakeLock
	7.6 WifiLock

	8 Bluetooth Commands
	8.1 Bt.close
	8.2 Bt.connect
	8.3 Bt.device.name
	8.4 Bt.disconnect
	8.5 Bt.onReadReady.resume
	8.6 Bt.open
	8.7 Bt.read.bytes
	8.8 Bt.read.ready
	8.9 Bt.reconnect
	8.10 Bt.set.UUID
	8.11 Bt.status
	8.12 Bt.write
	8.13 OnBtReadReady:

	9 Bundle Commands
	9.1.1 Bundle Auto-Create
	9.2 Bundle.clear
	9.3 Bundle.contain
	9.4 Bundle.create
	9.5 Bundle.get
	9.6 Bundle.keys
	9.7 Bundle.put
	9.8 Bundle.remove
	9.9 Bundle.type

	10 Clipboard Commands
	10.1 Clipboard.get
	10.2 Clipboard.put

	11 Communication: Email, Phone and Text Commands
	11.1 Email.send
	11.2 MyPhoneNumber
	11.3 Phone.call
	11.4 Phone.dial
	11.5 Phone.rcv.init
	11.6 Phone.rcv.next
	11.7 Sms.send
	11.8 Sms.rcv.init
	11.9 Sms.rcv.next

	12 Console Input and Interaction Commands
	12.1 Dialog.message
	12.2 Dialog.select
	12.3 Input
	12.4 Inkey$
	12.5 Kb.hide
	12.6 Kb.resume
	12.7 Kb.show
	12.8 Kb.showing
	12.9 Kb.toggle
	12.10 Key.resume
	12.11 OnKbChange:
	12.12 OnKeyPress:
	12.13 Popup
	12.14 Select
	12.15 Text.input
	12.16 TGet

	13 Console Output Commands
	13.1 Cls
	13.2 Console.front
	13.3 Console.line.count
	13.4 Console.line.text
	13.5 Console.line.touched
	13.6 Console.save
	13.7 Console.title
	13.8 ConsoleTouch.resume
	13.9 Print
	13.10 OnConsoleTouch:

	14 Debug Commands
	14.1 Debug.dump.array
	14.2 Debug.dump.bundle
	14.3 Debug.dump.list
	14.4 Debug.dump.scalars
	14.5 Debug.dump.stack
	14.6 Debug.echo.off
	14.7 Debug.echo.on
	14.8 Debug.off
	14.9 Debug.on
	14.10 Debug.print
	14.11 Debug.show
	14.12 Debug.show.array
	14.13 Debug.show.bundle
	14.14 Debug.show.list
	14.15 Debug.show.program
	14.16 Debug.show.scalars
	14.17 Debug.show.stack
	14.18 Debug.show.watch
	14.19 Debug.watch
	14.20 Echo.off
	14.21 Echo.on

	15 Files and Paths
	15.1 Paths Explained
	15.2 Paths in BASIC!
	15.3 Paths Outside of BASIC!
	15.4 Paths and Case-sensitivity
	15.5 Mark and Mark Limit
	15.6 Files and Resources

	16 File Commands
	16.1 Dir
	16.2 File.delete
	16.3 File.dir
	16.4 File.exists
	16.5 File.mkdir
	16.6 File.rename
	16.7 File.root
	16.8 File.size
	16.9 File.type
	16.10 GrabFile
	16.11 GrabURL
	16.12 Mkdir
	16.13 Rename

	17 File Byte I/O Commands
	17.1 Byte.close
	17.2 Byte.copy
	17.3 Byte.eof
	17.4 Byte.open
	17.5 Byte.position.get
	17.6 Byte.position.mark
	17.7 Byte.position.set
	17.8 Byte.read.buffer
	17.9 Byte.read.byte
	17.10 Byte.read.number
	17.11 Byte.truncate
	17.12 Byte.write.buffer
	17.13 Byte.write.byte
	17.14 Byte.write.number

	18 File Text I/O Commands
	18.1 Text.close
	18.2 Text.eof
	18.3 Text.open
	18.4 Text.position.get
	18.5 Text.position.mark
	18.6 Text.position.set
	18.7 Text.readln
	18.8 Text.writeln

	19 File ZIP I/O Commands
	19.1 Zip.close
	19.2 Zip.count
	19.3 Zip.dir
	19.4 Zip.open
	19.5 Zip.read
	19.6 Zip.write

	20 Font Commands
	20.1 Font.clear
	20.2 Font.delete
	20.3 Font.load

	21 FTP Client Commands
	21.1 Ftp.cd
	21.2 Ftp.close
	21.3 Ftp.delete
	21.4 Ftp.dir
	21.5 Ftp.get
	21.6 Ftp.mkdir
	21.7 Ftp.open
	21.8 Ftp.put
	21.9 Ftp.rename
	21.10 Ftp.rmdir

	22 GPS
	22.1 GPS Control Commands
	22.1.1 Gps.close
	22.1.2 Gps.open
	22.1.3 Gps.status

	22.2 GPS Location Commands
	22.2.1 Gps.accuracy
	22.2.2 Gps.altitude
	22.2.3 Gps.bearing
	22.2.4 Gps.latitude
	22.2.5 Gps.location
	22.2.6 Gps.longitude
	22.2.7 Gps.provider
	22.2.8 Gps.satellites
	22.2.9 Gps.speed
	22.2.10 Gps.time

	23 Graphics
	23.1 Introduction
	23.1.1 The Graphics Screen and Graphics Mode
	23.1.2 Display Lists
	23.1.3 Drawing Coordinates
	23.1.4 Drawing into Bitmaps
	23.1.5 Colors
	23.1.6 Paints
	23.1.6.1 Basic usage
	23.1.6.2 Advanced usage

	23.1.7 Style
	23.1.7.1 FILL
	23.1.7.2 STROKE
	23.1.7.3 STROKE and FILL

	23.1.8 Hardware Accelerated Graphics

	23.2 Graphics Setup Commands
	23.2.1 Gr.brightness
	23.2.2 Gr.close
	23.2.3 Gr.cls
	23.2.4 Gr.color
	23.2.5 Gr.front
	23.2.6 Gr.open
	23.2.7 Gr.orientation
	23.2.8 Gr.render
	23.2.9 Gr.scale
	23.2.10 Gr.screen
	23.2.11 Gr.set.antialias
	23.2.12 Gr.set.stroke
	23.2.13 Gr.statusbar
	23.2.14 Gr.statusbar.show

	23.3 Graphics Object Creation Commands
	23.3.1 Gr.arc
	23.3.2 Gr.circle
	23.3.3 Gr.line
	23.3.4 Gr.oval
	23.3.5 Gr.point
	23.3.6 Gr.poly
	23.3.7 Gr.rect
	23.3.8 Gr.set.pixels

	23.4 Graphics Groups
	23.4.1 Gr.group
	23.4.2 Gr.group.getDL
	23.4.3 Gr.group.list
	23.4.4 Gr.group.newDL

	23.5 Graphics Hide and Show Commands
	23.5.1 Gr.hide
	23.5.2 Gr.show
	23.5.3 Gr.show.toggle

	23.6 Graphics Touch Query Commands
	23.6.1 Gr.bounded.touch
	23.6.2 Gr.bounded.touch2
	23.6.3 Gr.onGrTouch.resume
	23.6.4 Gr.touch
	23.6.5 Gr.touch2
	23.6.6 OnGrTouch:

	23.7 Graphics Text Commands
	23.7.1 Gr.get.textbounds
	23.7.2 Gr.text.align
	23.7.3 Gr.text.bold
	23.7.4 Gr.text.draw
	23.7.5 Gr.text.height
	23.7.6 Gr.text.setfont
	23.7.7 Gr.text.size
	23.7.8 Gr.text.skew
	23.7.9 Gr.text.strike
	23.7.10 Gr.text.typeface
	23.7.11 Gr.text.underline
	23.7.12 Gr.text.width

	23.8 Graphics Bitmap Commands
	23.8.1 Gr.bitmap.create
	23.8.2 Gr.bitmap.crop
	23.8.3 Gr.bitmap.delete
	23.8.4 Gr.bitmap.draw
	23.8.5 Gr.bitmap.drawinto.end
	23.8.6 Gr.bitmap.drawinto.start
	23.8.7 Gr.bitmap.fill
	23.8.8 Gr.bitmap.load
	23.8.9 Gr.bitmap.save
	23.8.10 Gr.bitmap.scale
	23.8.11 Gr.bitmap.size
	23.8.12 Gr.get.bmpixel

	23.9 Graphics Paint Commands
	23.9.1 Gr.paint.copy
	23.9.2 Gr.paint.get
	23.9.3 Gr.paint.reset

	23.10 Graphics Rotate Commands
	23.10.1 Gr.rotate.end
	23.10.2 Gr.rotate.start

	23.11 Graphics Camera Commands
	23.11.1 Gr.camera.autoshoot
	23.11.2 Gr.camera.manualShoot
	23.11.3 Gr.camera.select
	23.11.4 Gr.camera.shoot

	23.12 Graphics Miscellaneous Commands
	23.12.1 Gr.clip
	23.12.2 Gr.getDL
	23.12.3 Gr.get.params
	23.12.4 Gr.get.pixel
	23.12.5 Gr.get.position
	23.12.6 Gr.get.type
	23.12.7 Gr.get.value
	23.12.8 Gr.modify
	23.12.8.1 General Purpose Parameters

	23.12.9 Gr.move
	23.12.10 Gr.newDL
	23.12.11 Gr.save
	23.12.12 Gr.screen.to_bitmap
	23.12.13 Gr_collision

	24 HTML Commands
	24.1 Browse
	24.2 Html.clear.cache
	24.3 Html.clear.history
	24.4 Html.close
	24.5 Html.get.datalink
	24.6 Html.go.back
	24.7 Html.go.forward
	24.8 Html.load.string
	24.9 Html.load.url
	24.10 Html.open
	24.11 Html.orientation
	24.12 Html.post
	24.13 Http.post

	25 Interrupts, Event Handlers and Errors
	25.1 Interrupt Labels
	25.2 OnError:
	25.3 GetError$()
	25.4 OnBackKey:, Back.resume
	25.5 OnLowMemory:, LowMemory.resume
	25.6 OnMenuKey:, MenuKey.resume

	26 List Commands
	26.1 List.add
	26.2 List.add.list
	26.3 List.add.array
	26.4 List.clear
	26.5 List.create
	26.6 List.get
	26.7 List.insert
	26.8 List.remove
	26.9 List.replace
	26.10 List.search
	26.11 List.size
	26.12 List.toArray
	26.13 List.type

	27 Math Functions
	27.1 Abs
	27.2 Acos
	27.3 Asin
	27.4 Atan
	27.5 Atan2
	27.6 Band
	27.7 Bnot
	27.8 Bor
	27.9 Bxor
	27.10 Cbrt
	27.11 Ceil
	27.12 Cos
	27.13 Cosh
	27.14 ExpXP
	27.15 Floor
	27.16 Frac
	27.17 Hypot
	27.18 Int
	27.19 Log
	27.20 Log10
	27.21 Max
	27.22 Min
	27.23 Mod
	27.24 Pi
	27.25 Pow
	27.26 Round
	27.27 Sgn
	27.28 Shift
	27.29 Sin
	27.30 Sinh
	27.31 Sqr
	27.32 Tan
	27.33 ToDegrees
	27.34 ToRadians

	28 Miscellaneous Commands
	28.1 Headset
	28.2 Notify
	28.3 Pause
	28.4 Swap
	28.5 Tone
	28.6 Vibrate
	28.7 Volume Keys
	28.7.1 VolKeys.off
	28.7.2 VolKeys.on

	29 Program Control, Execution and Status Commands
	29.1 Include
	29.2 Program.info
	29.3 Run
	29.4 Version$

	30 Program Flow Statements
	30.1 Do / Until
	30.1.1 D_U.continue
	30.1.2 D_U.break

	30.2 For - To - Step / Next
	30.2.1 F_N.continue
	30.2.2 F_N.break

	30.3 If / Then / Else / Elseif / Endif
	30.4 If / Then / Else
	30.5 Switch Commands
	30.5.1 Nesting Switch Operations
	30.5.2 Sw.begin
	30.5.3 Sw.case
	30.5.4 Sw.break
	30.5.5 Sw.default
	30.5.6 Sw.end

	30.6 While / Repeat
	30.6.1 W_R.continue
	30.6.2 W_R.break

	30.7 Labels, GoTo, GoSub, and Return
	30.7.1 Label
	30.7.2 GoTo
	30.7.3 GoSub / Return

	30.8 End
	30.9 Exit

	31 Queues
	32 Random Number Generator
	32.1 Randomize
	32.2 Rnd

	33 Read Commands
	33.1 Read.data
	33.2 Read.from
	33.3 Read.next

	34 Ringer Commands
	34.1 Ringer.get.mode
	34.2 Ringer.get.volume
	34.3 Ringer.set.mode
	34.4 Ringer.set.volume

	35 Sensors
	35.1 Sensors.close
	35.2 Sensors.list
	35.3 Sensors.open
	35.4 Sensors.read

	36 Socket (TCP/IP) Commands
	36.1 Client Socket (TCP/IP) Commands
	36.1.1 Socket.client.close
	36.1.2 Socket.client.connect
	36.1.3 Socket.client.read.file
	36.1.4 Socket.client.read.line
	36.1.5 Socket.client.read.ready
	36.1.6 Socket.client.server.ip
	36.1.7 Socket.client.status
	36.1.8 Socket.client.write.bytes
	36.1.9 Socket.client.write.file
	36.1.10 Socket.client.write.line

	36.2 Server Socket (TCP/IP) Commands
	36.2.1 Socket.myIP
	36.2.2 Socket.myIP
	36.2.3 Socket.server.client.ip
	36.2.4 Socket.server.close
	36.2.5 Socket.server.connect
	36.2.6 Socket.server.create
	36.2.7 Socket.server.disconnect
	36.2.8 Socket.server.read.file
	36.2.9 Socket.server.read.line
	36.2.10 Socket.server.read.ready
	36.2.11 Socket.server.status
	36.2.12 Socket.server.write.bytes
	36.2.13 Socket.server.write.file
	36.2.14 Socket.server.write.line

	37 SoundPool Commands
	37.1 SoundPool.load
	37.2 SoundPool.open
	37.3 SoundPool.pause
	37.4 SoundPool.play
	37.5 SoundPool.release
	37.6 SoundPool.resume
	37.7 SoundPool.setPriority
	37.8 SoundPool.setRate
	37.9 SoundPool.setVolume
	37.10 SoundPool.stop
	37.11 SoundPool.unload

	38 Speech Conversion
	38.1 Text To Speech
	38.1.1 TTS.init
	38.1.2 TTS.speak
	38.1.3 TTS.speak.toFile
	38.1.4 TTS.stop

	38.2 Speech To Text (Voice Recognition)
	38.2.1 STT.listen
	38.2.2 STT.results
	38.2.2.1 Console Mode
	38.2.2.2 Graphics Mode
	38.2.2.3 HTML Mode

	39 Sql Commands
	39.1 Sql.close
	39.2 Sql.delete
	39.3 Sql.drop_table
	39.4 Sql.exec
	39.5 Sql.insert
	39.6 Sql.new_table
	39.7 Sql.next
	39.8 Sql.open
	39.9 Sql.query
	39.10 Sql.query.length
	39.11 Sql.query.position
	39.12 Sql.raw_query
	39.13 Sql.update

	40 Stack Commands
	40.1 Stack.clear
	40.2 Stack.create
	40.3 Stack.isEmpty
	40.4 Stack.peek
	40.5 Stack.pop
	40.6 Stack.push
	40.7 Stack.type

	41 String Functions That Return a String
	41.1 Bin$
	41.2 Chr$
	41.3 Decode$
	41.4 Encode$
	41.5 Format$
	41.6 Format_using$
	41.7 Hex$
	41.8 Int$
	41.9 Left$
	41.10 Lower$
	41.11 Ltrim$
	41.12 Mid$
	41.13 Oct$
	41.14 Replace$
	41.15 Right$
	41.16 Rtrim$
	41.17 Str$
	41.18 Trim$
	41.19 Upper$
	41.20 Using$
	41.20.1 Locale expression
	41.20.2 Format expression
	41.20.2.1 Format Specifiers
	41.20.2.2 Optional Modifiers
	41.20.2.3 Index
	41.20.2.4 Flags
	41.20.2.5 Width
	41.20.2.6 Precision

	41.20.3 Integer values

	41.21 Word$

	42 String Functions That Return a Number
	42.1 Ascii
	42.2 Bin
	42.3 Ends_with
	42.4 Hex
	42.5 Is_in
	42.6 Is_number
	42.7 Len
	42.8 Oct
	42.9 Starts_with
	42.10 Ucode
	42.11 Val

	43 String Commands
	43.1 Decrypt
	43.2 Encrypt
	43.3 Join / Join.all
	43.4 Split / Split.all

	44 Superuser Commands
	44.1 Su.close
	44.2 Su.open
	44.3 Su.read.line
	44.4 Su.read.ready
	44.5 Su.write

	45 System Commands
	45.1 System.close
	45.2 System.open
	45.3 System.read.line
	45.4 System.read.ready <nvar>
	45.5 System.write

	46 Time Functions
	46.1 Clock
	46.2 Time

	47 Time Commands
	47.1 Time
	47.2 TimeZone.get
	47.3 TimeZone.list
	47.4 TimeZone.set

	48 Timer Interrupt and Commands
	48.1 OnTimer:
	48.2 Timer.clear
	48.3 Timer.resume
	48.4 Timer.set

	49 User-Defined Functions
	49.1 Variable Scope
	49.2 Data Structures in User-Defined Functions
	49.3 Commands
	49.3.1 Fn.def
	49.3.2 Fn.end
	49.3.3 Fn.rtn
	49.3.4 Call

	50 Appendix - Supported media formats
	50.1 Audio support

	51 Appendix - urlencoded
	52 Appendix – Formatter
	52.1 Formatter
	52.2 Format String Syntax
	52.3 Conversions
	52.3.1 Date/Time Conversions
	52.3.2 Flags
	52.3.3 Width
	52.3.4 Precision
	52.3.5 Argument Index

	52.4 Details
	52.4.1 General
	52.4.2 Character
	52.4.3 Numeric
	52.4.4 Date/Time
	52.4.5 Percent
	52.4.6 Line Separator
	52.4.7 Argument Index

