
Formatter

Documentation Version 03/01/2021

Edited by Robert A. Rioja

robrioja@gmail.com
http://www.RvAdList.com

mailto:robrioja@gmail.com
http://www.RvAdList.com/

Version 03/01/2021 Formatter Page 2 of 28

Table of Contents

Formatter..1
Table of Contents...2
1 Formatter...3
2 Format String Syntax..5
3 Conversions...7

3.1 Date/Time Conversions...8
3.2 Flags..10
3.3 Width...11
3.4 Precision..11
3.5 Argument Index...11

4 Details...12
4.1 General..12
4.2 Character...14
4.3 Numeric...14
4.4 Date/Time..24
4.5 Percent...27
4.6 Line Separator...27
4.7 Argument Index...27

Version 03/01/2021 Formatter Page 3 of 28

1 Formatter
An interpreter for printf-style format strings. This class provides support for layout justification
and alignment, common formats for numeric, string, and date/time data, and locale-specific
output. Common Java types such as byte, BigDecimal, and Calendar are supported.

Limited formatting customization for arbitrary user types is provided through the Formattable
interface.

Formatters are not necessarily safe for multi-threaded access. Thread safety is optional and is
the responsibility of users of methods in this class.

Formatted printing for the Java language is heavily inspired by C's printf. Although the

format strings are similar to C, some customizations have been made to accommodate the
Java language and exploit some of its features. Also, Java formatting is more strict than C's;
for example, if a conversion is incompatible with a flag, an exception will be thrown. In C
inapplicable flags are silently ignored. The format strings are thus intended to be recognizable
to C programmers but not necessarily completely compatible with those in C.

Examples of expected usage:

StringBuilder sb = new StringBuilder();
// Send all output to the Appendable object sb
Formatter formatter = new Formatter(sb, Locale.US);

// Explicit argument indices may be used to re-order output.
formatter.format("%4$2s %3$2s %2$2s %1$2s", "a", "b", "c", "d")
// -> " d c b a"

// Optional locale as the first argument can be used to get
// locale-specific formatting of numbers. The precision and width can be
// given to round and align the value.
formatter.format(Locale.FRANCE, "e = %+10.4f", Math.E);
// -> "e = +2,7183"

// The '(' numeric flag may be used to format negative numbers with
// parentheses rather than a minus sign. Group separators are
// automatically inserted.
formatter.format("Amount gained or lost since last statement: $ %(,.2f",
balanceDelta);
// -> "Amount gained or lost since last statement: $ (6,217.58)"

Convenience methods for common formatting requests exist as illustrated by the following
invocations:

// Writes a formatted string to System.out.
System.out.format("Local time: %tT", Calendar.getInstance());
// -> "Local time: 13:34:18"

// Writes formatted output to System.err.

https://developer.android.com/reference/java/util/Formattable
https://developer.android.com/reference/java/util/Calendar
https://developer.android.com/reference/java/math/BigDecimal

Version 03/01/2021 Formatter Page 4 of 28

System.err.printf("Unable to open file '%1$s': %2$s",
fileName, exception.getMessage());
// -> "Unable to open file 'food': No such file or directory"

Like C's sprintf(3), Strings may be formatted using the static method String.format:

// Format a string containing a date.
import java.util.Calendar;
import java.util.GregorianCalendar;
import static java.util.Calendar.*;

Calendar c = new GregorianCalendar(1995, MAY, 23);
String s = String.format("Duke's Birthday: %1$tb %1$te, %1$tY", c);
// -> s == "Duke's Birthday: May 23, 1995"

https://developer.android.com/reference/java/lang/String#format(java.lang.String,%20java.lang.Object...)

Version 03/01/2021 Formatter Page 5 of 28

2 Format String Syntax
Every method which produces formatted output requires a format string and an argument list.
The format string is a String which may contain fixed text and one or more embedded format

specifiers. Consider the following example:

Calendar c = ...;
String s = String.format("Duke's Birthday: %1$tm %1$te,%1$tY", c);

This format string is the first argument to the format method. It contains three format

specifiers "%1$tm", "%1$te", and "%1$tY" which indicate how the arguments should be

processed and where they should be inserted in the text. The remaining portions of the format
string are fixed text including "Dukes Birthday: " and any other spaces or punctuation.

The argument list consists of all arguments passed to the method after the format string. In
the above example, the argument list is of size one and consists of the Calendar object c.

The format specifiers for general, character, and numeric types have the following syntax:

%[argument_index$][flags][width][.precision]conversion

The optional argument_index is a decimal integer indicating the position of the argument in the
argument list. The first argument is referenced by "1$", the second by "2$", etc.

The optional flags is a set of characters that modify the output format. The set of valid flags
depends on the conversion.

The optional width is a positive decimal integer indicating the minimum number of characters
to be written to the output.

The optional precision is a non-negative decimal integer usually used to restrict the number of
characters. The specific behavior depends on the conversion.

The required conversion is a character indicating how the argument should be formatted. The
set of valid conversions for a given argument depends on the argument's data type.

The format specifiers for types which are used to represents dates and times have the
following syntax:

%[argument_index$][flags][width]conversion

The optional argument_index, flags and width are defined as above.

https://developer.android.com/reference/java/util/Calendar
https://developer.android.com/reference/java/lang/String

Version 03/01/2021 Formatter Page 6 of 28

The required conversion is a two character sequence. The first character is 't' or 'T'. The

second character indicates the format to be used. These characters are similar to but not
completely identical to those defined by GNU date and POSIX strftime(3c).

The format specifiers which do not correspond to arguments have the following syntax:

%[flags][width]conversion

The optional flags and width is defined as above.

The required conversion is a character indicating content to be inserted in the output.

Version 03/01/2021 Formatter Page 7 of 28

3 Conversions
Conversions are divided into the following categories:

1. General - may be applied to any argument type.
2. Character - may be applied to basic types which represent Unicode characters: char,

Character, byte, Byte, short, and Short. This conversion may also be applied to the

types int and Integer when Character.isValidCodePoint(int) returns true.

3. Numeric
1. Integral - may be applied to Java integral types: byte, Byte, short, Short, int and

Integer, long, Long, and BigInteger (but not char or Character).

2. Floating Point - may be applied to Java floating-point types: float, Float, double,

Double, and BigDecimal.

4. Date/Time - may be applied to Java types which are capable of encoding a date or time:
long, Long, Calendar, Date and TemporalAccessor.

5. Percent - produces a literal '%' ('\u0025').

6. Line Separator - produces the platform-specific line separator.

The following table summarizes the supported conversions. Conversions denoted by an
upper-case character (i.e. 'B', 'H', 'S', 'C', 'X', 'E', 'G', 'A', and 'T') are the same

as those for the corresponding lower-case conversion characters except that the result is
converted to upper case according to the rules of the prevailing Locale. The result is

equivalent to the following invocation of String.toUpperCase() .

 out.toUpperCase()

Conversion
Argument
Category Description

'b', 'B' general If the argument arg is null, then the result is "false". If arg is a
boolean or Boolean, then the result is the string returned by
String.valueOf(arg). Otherwise, the result is "true".

'h', 'H' general If the argument arg is null, then the result is "null". Otherwise, the
result is obtained by invoking
Integer.toHexString(arg.hashCode()).

's', 'S' general If the argument arg is null, then the result is "null". If arg
implements Formattable, then arg.formatTo is invoked.
Otherwise, the result is obtained by invoking arg.toString().

'c', 'C' character The result is a Unicode character.

'd' integral The result is formatted as a decimal integer.

'o' integral The result is formatted as an octal integer.

https://developer.android.com/reference/java/util/Formattable#formatTo(java.util.Formatter,%20int,%20int,%20int)
https://developer.android.com/reference/java/util/Formattable
https://developer.android.com/reference/java/lang/String#valueOf(boolean)
https://developer.android.com/reference/java/lang/Boolean
https://developer.android.com/reference/java/lang/String#toUpperCase()
https://developer.android.com/reference/java/util/Locale
https://developer.android.com/reference/java/time/temporal/TemporalAccessor
https://developer.android.com/reference/java/util/Date
https://developer.android.com/reference/java/util/Calendar
https://developer.android.com/reference/java/lang/Long
https://developer.android.com/reference/java/math/BigDecimal
https://developer.android.com/reference/java/lang/Double
https://developer.android.com/reference/java/lang/Float
https://developer.android.com/reference/java/lang/Character
https://developer.android.com/reference/java/math/BigInteger
https://developer.android.com/reference/java/lang/Long
https://developer.android.com/reference/java/lang/Integer
https://developer.android.com/reference/java/lang/Short
https://developer.android.com/reference/java/lang/Byte
https://developer.android.com/reference/java/lang/Character#isValidCodePoint(int)
https://developer.android.com/reference/java/lang/Integer
https://developer.android.com/reference/java/lang/Short
https://developer.android.com/reference/java/lang/Byte
https://developer.android.com/reference/java/lang/Character

Version 03/01/2021 Formatter Page 8 of 28

'x', 'X' integral The result is formatted as a hexadecimal integer.

'e', 'E' floating point The result is formatted as a decimal number in computerized scientific
notation.

'f' floating point The result is formatted as a decimal number.

'g', 'G' floating point The result is formatted using computerized scientific notation or decimal
format, depending on the precision and the value after rounding.

'a', 'A' floating point The result is formatted as a hexadecimal floating-point number with a
significand and an exponent. This conversion is not supported for the
BigDecimal type despite the latter's being in the floating point
argument category.

't', 'T' date/time Prefix for date and time conversion characters. See Date/Time
Conversions.

'%' percent The result is a literal '%' ('\u0025').

'n' line separator The result is the platform-specific line separator.

Any characters not explicitly defined as conversions are illegal and are reserved for future
extensions.

3.1 Date/Time Conversions
The following date and time conversion suffix characters are defined for the 't' and 'T'

conversions. The types are similar to but not completely identical to those defined by GNU
date and POSIX strftime(3c). Additional conversion types are provided to access Java-

specific functionality (e.g. 'L' for milliseconds within the second).

The following conversion characters are used for formatting times:

'H' Hour of the day for the 24-hour clock, formatted as two digits with a leading zero as necessary
i.e. 00 - 23.

'I' Hour for the 12-hour clock, formatted as two digits with a leading zero as necessary, i.e. 01 -
12.

'k' Hour of the day for the 24-hour clock, i.e. 0 - 23.

'l' Hour for the 12-hour clock, i.e. 1 - 12.

'M' Minute within the hour formatted as two digits with a leading zero as necessary, i.e. 00 - 59.

'S' Seconds within the minute, formatted as two digits with a leading zero as necessary, i.e. 00 -
60 ("60" is a special value required to support leap seconds).

'L' Millisecond within the second formatted as three digits with leading zeros as necessary, i.e. 000
- 999.

https://developer.android.com/reference/java/util/Formatter#dt
https://developer.android.com/reference/java/util/Formatter#dt

Version 03/01/2021 Formatter Page 9 of 28

'N' Nanosecond within the second, formatted as nine digits with leading zeros as necessary, i.e.
000000000 - 999999999.

'p' Locale-specific morning or afternoon marker in lower case, e.g."am" or "pm". Use of the
conversion prefix 'T' forces this output to upper case.

'z' RFC 822 style numeric time zone offset from GMT, e.g. -0800. This value will be adjusted as
necessary for Daylight Saving Time. For long, Long, and Date the time zone used is the
default time zone for this instance of the Java virtual machine.

'Z' A string representing the abbreviation for the time zone. This value will be adjusted as
necessary for Daylight Saving Time. For long, Long, and Date the time zone used is the
default time zone for this instance of the Java virtual machine. The Formatter's locale will
supersede the locale of the argument (if any).

's' Seconds since the beginning of the epoch starting at 1 January 1970 00:00:00 UTC, i.e.
Long.MIN_VALUE/1000 to Long.MAX_VALUE/1000.

'Q' Milliseconds since the beginning of the epoch starting at 1 January 1970 00:00:00 UTC, i.e.
Long.MIN_VALUE to Long.MAX_VALUE.

The following conversion characters are used for formatting dates:

'B' Locale-specific full month name, e.g. "January", "February".

'b' Locale-specific abbreviated month name, e.g. "Jan", "Feb".

'h' Same as 'b'.

'A' Locale-specific full name of the day of the week, e.g. "Sunday", "Monday".

'a' Locale-specific short name of the day of the week, e.g. "Sun", "Mon".

'C' Four-digit year divided by 100, formatted as two digits with leading zero as necessary, i.e. 00
- 99.

'Y' Year, formatted as at least four digits with leading zeros as necessary, e.g. 0092 equals 92 CE
for the Gregorian calendar.

'y' Last two digits of the year, formatted with leading zeros as necessary, i.e. 00 - 99.

'j' Day of year, formatted as three digits with leading zeros as necessary, e.g. 001 - 366 for the
Gregorian calendar.

'm' Month, formatted as two digits with leading zeros as necessary, i.e. 01 - 13.

'd' Day of month, formatted as two digits with leading zeros as necessary, i.e. 01 - 31.

'e' Day of month, formatted as two digits, i.e. 1 - 31.

The following conversion characters are used for formatting common date/time compositions.

https://developer.android.com/reference/java/text/DateFormatSymbols#getShortWeekdays()
https://developer.android.com/reference/java/text/DateFormatSymbols#getWeekdays()
https://developer.android.com/reference/java/text/DateFormatSymbols#getShortMonths()
https://developer.android.com/reference/java/text/DateFormatSymbols#getMonths()
https://developer.android.com/reference/java/util/TimeZone#getDefault()
https://developer.android.com/reference/java/util/Date
https://developer.android.com/reference/java/lang/Long
https://developer.android.com/reference/java/util/TimeZone#getDefault()
https://developer.android.com/reference/java/util/Date
https://developer.android.com/reference/java/lang/Long
http://www.ietf.org/rfc/rfc0822.txt
https://developer.android.com/reference/java/text/DateFormatSymbols#getAmPmStrings()

Version 03/01/2021 Formatter Page 10 of 28

'R' Time formatted for the 24-hour clock as "%tH:%tM".

'T' Time formatted for the 24-hour clock as "%tH:%tM:%tS".

'r' Time formatted for the 12-hour clock as "%tI:%tM:%tS %Tp". The location of the morning
or afternoon marker ('%Tp') may be locale-dependent.

'D' Date formatted as "%tm/%td/%ty".

'F' ISO 8601 complete date formatted as "%tY-%tm-%td".

'c' Date and time formatted as "%ta %tb %td %tT %tZ %tY", e.g. "Sun Jul 20
16:17:00 EDT 1969".

Any characters not explicitly defined as date/time conversion suffixes are illegal and are
reserved for future extensions.

3.2 Flags
The following table summarizes the supported flags. y means the flag is supported for the
indicated argument types.

Flag General Character Integral
Floating

Point
Date/
Time Description

'-' y y y y y The result will be left-justified.

'#' y1 - y3 y - The result should use a conversion-
dependent alternate form.

'+' - - y4 y - The result will always include a sign.

' '
- - y4 y - The result will include a leading space for

positive values.

'0' - - y y - The result will be zero-padded.

','
- - y2 y5 - The result will include locale-specific

grouping separators.

'('
- - y4 y5

-
The result will enclose negative numbers in
parentheses.

1 Depends on the definition of Formattable.

2 For 'd' conversion only.

3 For 'o', 'x', and 'X' conversions only.

4 For 'd', 'o', 'x', and 'X' conversions applied to BigInteger or 'd' applied to byte,

Byte, short, Short, int and Integer, long, and Long.

5 For 'e', 'E', 'f', 'g', and 'G' conversions only.

https://developer.android.com/reference/java/lang/Long
https://developer.android.com/reference/java/lang/Integer
https://developer.android.com/reference/java/lang/Short
https://developer.android.com/reference/java/lang/Byte
https://developer.android.com/reference/java/math/BigInteger
https://developer.android.com/reference/java/util/Formattable
https://developer.android.com/reference/java/text/DecimalFormatSymbols#getGroupingSeparator()
http://www.w3.org/TR/NOTE-datetime

Version 03/01/2021 Formatter Page 11 of 28

Any characters not explicitly defined as flags are illegal and are reserved for future extensions.

3.3 Width
The width is the minimum number of characters to be written to the output. For the line
separator conversion, width is not applicable; if it is provided, an exception will be thrown.

3.4 Precision
For general argument types, the precision is the maximum number of characters to be written
to the output.

For the floating-point conversions 'a', 'A', 'e', 'E', and 'f' the precision is the number of

digits after the radix point. If the conversion is 'g' or 'G', then the precision is the total

number of digits in the resulting magnitude after rounding.

For character, integral, and date/time argument types and the percent and line separator
conversions, the precision is not applicable; if a precision is provided, an exception will be
thrown.

3.5 Argument Index
The argument index is a decimal integer indicating the position of the argument in the
argument list. The first argument is referenced by "1$", the second by "2$", etc.

Another way to reference arguments by position is to use the '<' ('\u003c') flag, which

causes the argument for the previous format specifier to be re-used. For example, the
following two statements would produce identical strings:

Calendar c = ...;
String s1 = String.format("Duke's Birthday: %1$tm %1$te,%1$tY", c);

String s2 = String.format("Duke's Birthday: %1$tm %<te,%<tY", c);

Version 03/01/2021 Formatter Page 12 of 28

4 Details
This section is intended to provide behavioral details for formatting, including conditions and
exceptions, supported data types, localization, and interactions between flags, conversions,
and data types.

Any characters not explicitly defined as conversions, date/time conversion suffixes, or flags are
illegal and are reserved for future extensions. Use of such a character in a format string will
cause an UnknownFormatConversionException or UnknownFormatFlagsException

to be thrown.

If the format specifier contains a width or precision with an invalid value or which is otherwise
unsupported, then a IllegalFormatWidthException or

IllegalFormatPrecisionException respectively will be thrown.

If a format specifier contains a conversion character that is not applicable to the corresponding
argument, then an IllegalFormatConversionException will be thrown.

All specified exceptions may be thrown by any of the format methods of Formatter as well

as by any format convenience methods such as String.format and

PrintStream.printf.

Conversions denoted by an upper-case character (i.e. 'B', 'H', 'S', 'C', 'X', 'E', 'G',

'A', and 'T') are the same as those for the corresponding lower-case conversion characters

except that the result is converted to upper case according to the rules of the prevailing
Locale. The result is equivalent to the following invocation of String#toUpperCase().

 out.toUpperCase()

4.1 General
The following general conversions may be applied to any argument type:

'b' '\u0062' Produces either "true" or "false" as returned by
Boolean#toString(boolean).

If the argument is null, then the result is "false". If the argument is a
boolean or Boolean, then the result is the string returned by
String.valueOf(). Otherwise, the result is "true".

If the '#' flag is given, then a
FormatFlagsConversionMismatchException will be thrown.

https://developer.android.com/reference/java/util/FormatFlagsConversionMismatchException
https://developer.android.com/reference/java/lang/String#valueOf(boolean)
https://developer.android.com/reference/java/lang/Boolean
https://developer.android.com/reference/java/lang/Boolean#toString(boolean)
https://developer.android.com/reference/java/lang/String#toUpperCase()
https://developer.android.com/reference/java/util/Locale
https://developer.android.com/reference/java/io/PrintStream#printf(java.lang.String,%20java.lang.Object...)
https://developer.android.com/reference/java/lang/String#format(java.lang.String,%20java.lang.Object...)
https://developer.android.com/reference/java/util/IllegalFormatConversionException
https://developer.android.com/reference/java/util/IllegalFormatPrecisionException
https://developer.android.com/reference/java/util/IllegalFormatWidthException
https://developer.android.com/reference/java/util/UnknownFormatFlagsException
https://developer.android.com/reference/java/util/UnknownFormatConversionException

Version 03/01/2021 Formatter Page 13 of 28

'B' '\u0042' The upper-case variant of 'b'.

'h' '\u0068' Produces a string representing the hash code value of the object.

If the argument, arg is null, then the result is "null". Otherwise, the result is
obtained by invoking Integer.toHexString(arg.hashCode()).

If the '#' flag is given, then a
FormatFlagsConversionMismatchException will be thrown.

'H' '\u0048' The upper-case variant of 'h'.

's' '\u0073' Produces a string.

If the argument is null, then the result is "null". If the argument implements
Formattable, then its formatTo method is invoked. Otherwise, the result is
obtained by invoking the argument's toString() method.

If the '#' flag is given and the argument is not a Formattable , then a
FormatFlagsConversionMismatchException will be thrown.

'S' '\u0053' The upper-case variant of 's'.

The following flags apply to general conversions:

'-' '\u002d' Left justifies the output. Spaces ('\u0020') will be added at the end of the
converted value as required to fill the minimum width of the field. If the width is
not provided, then a MissingFormatWidthException will be thrown. If
this flag is not given then the output will be right-justified.

'#' '\u0023' Requires the output use an alternate form. The definition of the form is specified
by the conversion.

The width is the minimum number of characters to be written to the output. If the length of the
converted value is less than the width then the output will be padded by ' ' ('\u0020')

until the total number of characters equals the width. The padding is on the left by default. If
the '-' flag is given, then the padding will be on the right. If the width is not specified then

there is no minimum.

The precision is the maximum number of characters to be written to the output. The precision
is applied before the width, thus the output will be truncated to precision characters even if

the width is greater than the precision. If the precision is not specified then there is no explicit
limit on the number of characters.

https://developer.android.com/reference/java/util/MissingFormatWidthException
https://developer.android.com/reference/java/util/FormatFlagsConversionMismatchException
https://developer.android.com/reference/java/util/Formattable
https://developer.android.com/reference/java/util/Formattable#formatTo(java.util.Formatter,%20int,%20int,%20int)
https://developer.android.com/reference/java/util/Formattable
https://developer.android.com/reference/java/util/FormatFlagsConversionMismatchException

Version 03/01/2021 Formatter Page 14 of 28

4.2 Character
This conversion may be applied to char and Character. It may also be applied to the types

byte, Byte, short, and Short, int and Integer when Character#isValidCodePoint
returns true. If it returns false then an IllegalFormatCodePointException will be

thrown.

'c' '\u0063' Formats the argument as a Unicode character as described in Unicode Character
Representation. This may be more than one 16-bit char in the case where the
argument represents a supplementary character.

If the '#' flag is given, then a
FormatFlagsConversionMismatchException will be thrown.

'C' '\u0043' The upper-case variant of 'c'.

The '-' flag defined for General conversions applies. If the '#' flag is given, then a

FormatFlagsConversionMismatchException will be thrown.

The width is defined as for General conversions.

The precision is not applicable. If the precision is specified then an
IllegalFormatPrecisionException will be thrown.

4.3 Numeric
Numeric conversions are divided into the following categories:

1. Byte, Short, Integer, and Long
2. BigInteger
3. Float and Double
4. BigDecimal

Numeric types will be formatted according to the following algorithm:

Number Localization Algorithm

After digits are obtained for the integer part, fractional part, and exponent (as appropriate for
the data type), the following transformation is applied:

1. Each digit character d in the string is replaced by a locale-specific digit computed
relative to the current locale's zero digit z; that is d - '0' + z.

2. If a decimal separator is present, a locale-specific decimal separator is substituted.
3. If the ',' ('\u002c') flag is given, then the locale-specific grouping separator is

inserted by scanning the integer part of the string from least significant to most
significant digits and inserting a separator at intervals defined by the locale's grouping
size.

https://developer.android.com/reference/java/text/DecimalFormat#getGroupingSize()
https://developer.android.com/reference/java/text/DecimalFormat#getGroupingSize()
https://developer.android.com/reference/java/text/DecimalFormatSymbols#getGroupingSeparator()
https://developer.android.com/reference/java/text/DecimalFormatSymbols#getDecimalSeparator()
https://developer.android.com/reference/java/text/DecimalFormatSymbols#getZeroDigit()
https://developer.android.com/reference/java/util/Formatter#dnbdec
https://developer.android.com/reference/java/util/Formatter#dndec
https://developer.android.com/reference/java/util/Formatter#dnbint
https://developer.android.com/reference/java/util/Formatter#dnint
https://developer.android.com/reference/java/util/IllegalFormatPrecisionException
https://developer.android.com/reference/java/util/Formatter#genWidth
https://developer.android.com/reference/java/util/FormatFlagsConversionMismatchException
https://developer.android.com/reference/java/util/Formatter#dFlags
https://developer.android.com/reference/java/util/FormatFlagsConversionMismatchException
https://developer.android.com/reference/java/lang/Character.html#unicode
https://developer.android.com/reference/java/lang/Character.html#unicode
https://developer.android.com/reference/java/util/IllegalFormatCodePointException
https://developer.android.com/reference/java/lang/Character#isValidCodePoint(int)
https://developer.android.com/reference/java/lang/Integer
https://developer.android.com/reference/java/lang/Short
https://developer.android.com/reference/java/lang/Byte
https://developer.android.com/reference/java/lang/Character

Version 03/01/2021 Formatter Page 15 of 28

4. If the '0' flag is given, then the locale-specific zero digits are inserted after the sign

character, if any, and before the first non-zero digit, until the length of the string is equal
to the requested field width.

5. If the value is negative and the '(' flag is given, then a '(' ('\u0028') is prepended

and a ')' ('\u0029') is appended.

6. If the value is negative (or floating-point negative zero) and '(' flag is not given, then a

'-' ('\u002d') is prepended.

7. If the '+' flag is given and the value is positive or zero (or floating-point positive zero),

then a '+' ('\u002b') will be prepended.

If the value is NaN or positive infinity the literal strings "NaN" or "Infinity" respectively, will be
output. If the value is negative infinity, then the output will be "(Infinity)" if the '(' flag is given

otherwise the output will be "-Infinity". These values are not localized.

Byte, Short, Integer, and Long

The following conversions may be applied to byte, Byte, short, Short, int and Integer,

long, and Long.

'd' '\u0064' Formats the argument as a decimal integer. The localization algorithm is applied.
If the '0' flag is given and the value is negative, then the zero padding will occur
after the sign.

If the '#' flag is given then a
FormatFlagsConversionMismatchException will be thrown.

'o' '\u006f' Formats the argument as an integer in base eight. No localization is applied.

If x is negative then the result will be an unsigned value generated by adding 2n to
the value where n is the number of bits in the type as returned by the static SIZE
field in the Byte, Short, Integer, or Long classes as appropriate.

If the '#' flag is given then the output will always begin with the radix indicator
'0'.

If the '0' flag is given then the output will be padded with leading zeros to the
field width following any indication of sign.

If '(', '+', ' ', or ',' flags are given then a
FormatFlagsConversionMismatchException will be thrown.

'x' '\u0078' Formats the argument as an integer in base sixteen. No localization is applied.

https://developer.android.com/reference/java/util/FormatFlagsConversionMismatchException
https://developer.android.com/reference/java/lang/Long#SIZE
https://developer.android.com/reference/java/lang/Integer#SIZE
https://developer.android.com/reference/java/lang/Short#SIZE
https://developer.android.com/reference/java/lang/Byte#SIZE
https://developer.android.com/reference/java/util/FormatFlagsConversionMismatchException
https://developer.android.com/reference/java/util/Formatter#L10nAlgorithm
https://developer.android.com/reference/java/lang/Long
https://developer.android.com/reference/java/lang/Integer
https://developer.android.com/reference/java/lang/Short
https://developer.android.com/reference/java/lang/Byte
https://developer.android.com/reference/java/text/DecimalFormatSymbols#getZeroDigit()

Version 03/01/2021 Formatter Page 16 of 28

If x is negative then the result will be an unsigned value generated by adding 2n to
the value where n is the number of bits in the type as returned by the static SIZE
field in the Byte, Short, Integer, or Long classes as appropriate.

If the '#' flag is given then the output will always begin with the radix indicator
"0x".

If the '0' flag is given then the output will be padded to the field width with
leading zeros after the radix indicator or sign (if present).

If '(', ' ', '+', or ',' flags are given then a
FormatFlagsConversionMismatchException will be thrown.

'X' '\u0058' The upper-case variant of 'x'. The entire string representing the number will be
converted to upper case including the 'x' (if any) and all hexadecimal digits 'a'
- 'f' ('\u0061' - '\u0066').

If the conversion is 'o', 'x', or 'X' and both the '#' and the '0' flags are given, then result

will contain the radix indicator ('0' for octal and "0x" or "0X" for hexadecimal), some

number of zeros (based on the width), and the value.

If the '-' flag is not given, then the space padding will occur before the sign.

The following flags apply to numeric integral conversions:

'+' '\u002b' Requires the output to include a positive sign for all positive numbers. If this flag
is not given then only negative values will include a sign.

If both the '+' and ' ' flags are given then an
IllegalFormatFlagsException will be thrown.

' ' '\u0020' Requires the output to include a single extra space ('\u0020') for non-negative
values.

If both the '+' and ' ' flags are given then an
IllegalFormatFlagsException will be thrown.

'0' '\u0030' Requires the output to be padded with leading zeros to the minimum field width
following any sign or radix indicator except when converting NaN or infinity. If
the width is not provided, then a MissingFormatWidthException will be
thrown.

https://developer.android.com/reference/java/util/MissingFormatWidthException
https://developer.android.com/reference/java/text/DecimalFormatSymbols#getZeroDigit()
https://developer.android.com/reference/java/util/IllegalFormatFlagsException
https://developer.android.com/reference/java/util/IllegalFormatFlagsException
https://developer.android.com/reference/java/lang/String#toUpperCase()
https://developer.android.com/reference/java/util/FormatFlagsConversionMismatchException
https://developer.android.com/reference/java/lang/Long#SIZE
https://developer.android.com/reference/java/lang/Integer#SIZE
https://developer.android.com/reference/java/lang/Short#SIZE
https://developer.android.com/reference/java/lang/Byte#SIZE

Version 03/01/2021 Formatter Page 17 of 28

If both the '-' and '0' flags are given then an
IllegalFormatFlagsException will be thrown.

',' '\u002c' Requires the output to include the locale-specific group separators as described in
the "group" section of the localization algorithm.

'(' '\u0028' Requires the output to prepend a '(' ('\u0028') and append a ')' ('\
u0029') to negative values.

If no flags are given the default formatting is as follows:

• The output is right-justified within the width.

• Negative numbers begin with a '-' ('\u002d').

• Positive numbers and zero do not include a sign or extra leading space.
• No grouping separators are included.

The width is the minimum number of characters to be written to the output. This includes any
signs, digits, grouping separators, radix indicator, and parentheses. If the length of the
converted value is less than the width then the output will be padded by spaces ('\u0020')

until the total number of characters equals width. The padding is on the left by default. If '-'

flag is given then the padding will be on the right. If width is not specified then there is no
minimum.

The precision is not applicable. If precision is specified then an
IllegalFormatPrecisionException will be thrown.

BigInteger

The following conversions may be applied to BigInteger.

'd' '\u0064' Requires the output to be formatted as a decimal integer. The localization
algorithm is applied.

If the '#' flag is given FormatFlagsConversionMismatchException
will be thrown.

'o' '\u006f' Requires the output to be formatted as an integer in base eight. No localization is
applied.

If x is negative then the result will be a signed value beginning with '-' ('\
u002d'). Signed output is allowed for this type because unlike the primitive
types it is not possible to create an unsigned equivalent without assuming an
explicit data-type size.

https://developer.android.com/reference/java/util/FormatFlagsConversionMismatchException
https://developer.android.com/reference/java/util/Formatter#L10nAlgorithm
https://developer.android.com/reference/java/util/Formatter#L10nAlgorithm
https://developer.android.com/reference/java/math/BigInteger
https://developer.android.com/reference/java/util/IllegalFormatPrecisionException
https://developer.android.com/reference/java/util/Formatter#L10nGroup
https://developer.android.com/reference/java/text/DecimalFormatSymbols#getGroupingSeparator()
https://developer.android.com/reference/java/util/IllegalFormatFlagsException

Version 03/01/2021 Formatter Page 18 of 28

If x is positive or zero and the '+' flag is given then the result will begin with
'+' ('\u002b').

If the '#' flag is given then the output will always begin with '0' prefix.

If the '0' flag is given then the output will be padded with leading zeros to the
field width following any indication of sign.

If the ',' flag is given then a
FormatFlagsConversionMismatchException will be thrown.

'x' '\u0078' Requires the output to be formatted as an integer in base sixteen. No localization
is applied.

If x is negative then the result will be a signed value beginning with '-' ('\
u002d'). Signed output is allowed for this type because unlike the primitive
types it is not possible to create an unsigned equivalent without assuming an
explicit data-type size.

If x is positive or zero and the '+' flag is given then the result will begin with
'+' ('\u002b').

If the '#' flag is given then the output will always begin with the radix indicator
"0x".

If the '0' flag is given then the output will be padded to the field width with
leading zeros after the radix indicator or sign (if present).

If the ',' flag is given then a
FormatFlagsConversionMismatchException will be thrown.

'X' '\u0058' The upper-case variant of 'x'. The entire string representing the number will be
converted to upper case including the 'x' (if any) and all hexadecimal digits 'a'
- 'f' ('\u0061' - '\u0066').

If the conversion is 'o', 'x', or 'X' and both the '#' and the '0' flags are given, then result

will contain the base indicator ('0' for octal and "0x" or "0X" for hexadecimal), some

number of zeros (based on the width), and the value.

If the '0' flag is given and the value is negative, then the zero padding will occur after the

sign.

If the '-' flag is not given, then the space padding will occur before the sign.

https://developer.android.com/reference/java/lang/String#toUpperCase()
https://developer.android.com/reference/java/util/FormatFlagsConversionMismatchException
https://developer.android.com/reference/java/util/FormatFlagsConversionMismatchException

Version 03/01/2021 Formatter Page 19 of 28

All flags defined for Byte, Short, Integer, and Long apply. The default behavior when no flags
are given is the same as for Byte, Short, Integer, and Long.

The specification of width is the same as defined for Byte, Short, Integer, and Long.

The precision is not applicable. If precision is specified then an
IllegalFormatPrecisionException will be thrown.

Float and Double

The following conversions may be applied to float, Float, double and Double.

'e' '\u0065' Requires the output to be formatted using computerized scientific notation. The
localization algorithm is applied.

The formatting of the magnitude m depends upon its value.

If m is NaN or infinite, the literal strings "NaN" or "Infinity", respectively, will be
output. These values are not localized.

If m is positive-zero or negative-zero, then the exponent will be "+00".

Otherwise, the result is a string that represents the sign and magnitude (absolute
value) of the argument. The formatting of the sign is described in the localization
algorithm. The formatting of the magnitude m depends upon its value.

Let n be the unique integer such that 10n <= m < 10n+1; then let a be the
mathematically exact quotient of m and 10n so that 1 <= a < 10. The magnitude is
then represented as the integer part of a, as a single decimal digit, followed by the
decimal separator followed by decimal digits representing the fractional part of a,
followed by the lower-case locale-specific exponent separator (e.g. 'e'),
followed by the sign of the exponent, followed by a representation of n as a
decimal integer, as produced by the method Long#toString(long, int),
and zero-padded to include at least two digits.

The number of digits in the result for the fractional part of m or a is equal to the
precision. If the precision is not specified then the default value is 6. If the
precision is less than the number of digits which would appear after the decimal
point in the string returned by Float#toString(float) or
Double.toString(double) respectively, then the value will be rounded
using the round half up algorithm. Otherwise, zeros may be appended to reach the
precision. For a canonical representation of the value, use
Float.toString(float) or Double#toString(double) as
appropriate.

If the ',' flag is given, then an
FormatFlagsConversionMismatchException will be thrown.

https://developer.android.com/reference/java/util/FormatFlagsConversionMismatchException
https://developer.android.com/reference/java/lang/Double#toString(double)
https://developer.android.com/reference/java/lang/Float#toString(float)
https://developer.android.com/reference/java/math/BigDecimal#ROUND_HALF_UP
https://developer.android.com/reference/java/lang/Double#toString(double)
https://developer.android.com/reference/java/lang/Float#toString(float)
https://developer.android.com/reference/java/lang/Long#toString(long,%20int)
https://developer.android.com/reference/java/text/DecimalFormatSymbols#getExponentSeparator()
https://developer.android.com/reference/java/util/Formatter#L10nAlgorithm
https://developer.android.com/reference/java/util/Formatter#L10nAlgorithm
https://developer.android.com/reference/java/util/Formatter#L10nAlgorithm
https://developer.android.com/reference/java/lang/Double
https://developer.android.com/reference/java/lang/Float
https://developer.android.com/reference/java/util/IllegalFormatPrecisionException
https://developer.android.com/reference/java/util/Formatter#intWidth
https://developer.android.com/reference/java/util/Formatter#intdFlags
https://developer.android.com/reference/java/util/Formatter#intFlags

Version 03/01/2021 Formatter Page 20 of 28

'E' '\u0045' The upper-case variant of 'e'. The exponent symbol will be the upper-case
locale-specific exponent separator (e.g. 'E').

'g' '\u0067' Requires the output to be formatted in general scientific notation as described
below. The localization algorithm is applied.

After rounding for the precision, the formatting of the resulting magnitude m
depends on its value.

If m is greater than or equal to 10-4 but less than 10precision then it is represented in
decimal format.

If m is less than 10-4 or greater than or equal to 10precision, then it is represented in
computerized scientific notation.

The total number of significant digits in m is equal to the precision. If the
precision is not specified, then the default value is 6. If the precision is 0, then it
is taken to be 1.

If the '#' flag is given then an
FormatFlagsConversionMismatchException will be thrown.

'G' '\u0047' The upper-case variant of 'g'.

'f' '\u0066' Requires the output to be formatted using decimal format. The localization
algorithm is applied.

The result is a string that represents the sign and magnitude (absolute value) of the
argument. The formatting of the sign is described in the localization algorithm.
The formatting of the magnitude m depends upon its value.

If m NaN or infinite, the literal strings "NaN" or "Infinity", respectively, will be
output. These values are not localized.

The magnitude is formatted as the integer part of m, with no leading zeroes,
followed by the decimal separator followed by one or more decimal digits
representing the fractional part of m.

The number of digits in the result for the fractional part of m or a is equal to the
precision. If the precision is not specified then the default value is 6. If the
precision is less than the number of digits which would appear after the decimal
point in the string returned by Float#toString(float) or
Double.toString(double) respectively, then the value will be rounded
using the round half up algorithm. Otherwise, zeros may be appended to reach the
precision. For a canonical representation of the value, use
Float.toString(float) or Double#toString(double) as

https://developer.android.com/reference/java/lang/Double#toString(double)
https://developer.android.com/reference/java/lang/Float#toString(float)
https://developer.android.com/reference/java/math/BigDecimal#ROUND_HALF_UP
https://developer.android.com/reference/java/lang/Double#toString(double)
https://developer.android.com/reference/java/lang/Float#toString(float)
https://developer.android.com/reference/java/util/Formatter#L10nAlgorithm
https://developer.android.com/reference/java/util/Formatter#L10nAlgorithm
https://developer.android.com/reference/java/util/Formatter#L10nAlgorithm
https://developer.android.com/reference/java/util/FormatFlagsConversionMismatchException
https://developer.android.com/reference/java/util/Formatter#scientific
https://developer.android.com/reference/java/util/Formatter#decimal
https://developer.android.com/reference/java/util/Formatter#L10nAlgorithm
https://developer.android.com/reference/java/text/DecimalFormatSymbols#getExponentSeparator()

Version 03/01/2021 Formatter Page 21 of 28

appropriate.

'a' '\u0061' Requires the output to be formatted in hexadecimal exponential form. No
localization is applied.

The result is a string that represents the sign and magnitude (absolute value) of the
argument x.

If x is negative or a negative-zero value then the result will begin with '-' ('\
u002d').

If x is positive or a positive-zero value and the '+' flag is given then the result
will begin with '+' ('\u002b').

The formatting of the magnitude m depends upon its value.

• If the value is NaN or infinite, the literal strings "NaN" or "Infinity",
respectively, will be output.

• If m is zero then it is represented by the string "0x0.0p0".
• If m is a double value with a normalized representation then substrings

are used to represent the significand and exponent fields. The significand
is represented by the characters "0x1." followed by the hexadecimal
representation of the rest of the significand as a fraction. The exponent is
represented by 'p' ('\u0070') followed by a decimal string of the
unbiased exponent as if produced by invoking Integer.toString on
the exponent value. If the precision is specified, the value is rounded to the
given number of hexadecimal digits.

• If m is a double value with a subnormal representation then, unless the
precision is specified to be in the range 1 through 12, inclusive, the
significand is represented by the characters '0x0.' followed by the
hexadecimal representation of the rest of the significand as a fraction, and
the exponent represented by 'p-1022'. If the precision is in the interval
[1, 12], the subnormal value is normalized such that it begins with the
characters '0x1.', rounded to the number of hexadecimal digits of
precision, and the exponent adjusted accordingly. Note that there must be
at least one nonzero digit in a subnormal significand.

If the '(' or ',' flags are given, then a
FormatFlagsConversionMismatchException will be thrown.

'A' '\u0041' The upper-case variant of 'a'. The entire string representing the number will be
converted to upper case including the 'x' ('\u0078') and 'p' ('\u0070'
and all hexadecimal digits 'a' - 'f' ('\u0061' - '\u0066').

https://developer.android.com/reference/java/util/FormatFlagsConversionMismatchException
https://developer.android.com/reference/java/lang/Integer#toString(int)

Version 03/01/2021 Formatter Page 22 of 28

All flags defined for Byte, Short, Integer, and Long apply.

If the '#' flag is given, then the decimal separator will always be present.

If no flags are given the default formatting is as follows:

• The output is right-justified within the width.

• Negative numbers begin with a '-'.

• Positive numbers and positive zero do not include a sign or extra leading space.
• No grouping separators are included.
• The decimal separator will only appear if a digit follows it.

The width is the minimum number of characters to be written to the output. This includes any
signs, digits, grouping separators, decimal separators, exponential symbol, radix indicator,
parentheses, and strings representing infinity and NaN as applicable. If the length of the
converted value is less than the width then the output will be padded by spaces ('\u0020')

until the total number of characters equals width. The padding is on the left by default. If the
'-' flag is given then the padding will be on the right. If width is not specified then there is no

minimum.

If the conversion is 'e', 'E' or 'f', then the precision is the number of digits after the

decimal separator. If the precision is not specified, then it is assumed to be 6.

If the conversion is 'g' or 'G', then the precision is the total number of significant digits in the

resulting magnitude after rounding. If the precision is not specified, then the default value is 6.

If the precision is 0, then it is taken to be 1.

If the conversion is 'a' or 'A', then the precision is the number of hexadecimal digits after

the radix point. If the precision is not provided, then all of the digits as returned by
Double.toHexString(double) will be output.

BigDecimal

The following conversions may be applied BigDecimal.

'e' '\u0065' Requires the output to be formatted using computerized scientific notation. The
localization algorithm is applied.

The formatting of the magnitude m depends upon its value.

If m is positive-zero or negative-zero, then the exponent will be "+00".

Otherwise, the result is a string that represents the sign and magnitude (absolute
value) of the argument. The formatting of the sign is described in the localization
algorithm. The formatting of the magnitude m depends upon its value.

https://developer.android.com/reference/java/util/Formatter#L10nAlgorithm
https://developer.android.com/reference/java/util/Formatter#L10nAlgorithm
https://developer.android.com/reference/java/util/Formatter#L10nAlgorithm
https://developer.android.com/reference/java/math/BigDecimal
https://developer.android.com/reference/java/lang/Double#toHexString(double)
https://developer.android.com/reference/java/util/Formatter#intFlags

Version 03/01/2021 Formatter Page 23 of 28

Let n be the unique integer such that 10n <= m < 10n+1; then let a be the
mathematically exact quotient of m and 10n so that 1 <= a < 10. The magnitude is
then represented as the integer part of a, as a single decimal digit, followed by the
decimal separator followed by decimal digits representing the fractional part of a,
followed by the exponent symbol 'e' ('\u0065'), followed by the sign of the
exponent, followed by a representation of n as a decimal integer, as produced by
the method Long#toString(long, int), and zero-padded to include at
least two digits.

The number of digits in the result for the fractional part of m or a is equal to the
precision. If the precision is not specified then the default value is 6. If the
precision is less than the number of digits to the right of the decimal point then the
value will be rounded using the round half up algorithm. Otherwise, zeros may be
appended to reach the precision. For a canonical representation of the value, use
BigDecimal.toString().

If the ',' flag is given, then an
FormatFlagsConversionMismatchException will be thrown.

'E' '\u0045' The upper-case variant of 'e'. The exponent symbol will be 'E' ('\u0045').

'g' '\u0067' Requires the output to be formatted in general scientific notation as described
below. The localization algorithm is applied.

After rounding for the precision, the formatting of the resulting magnitude m
depends on its value.

If m is greater than or equal to 10-4 but less than 10precision then it is represented in
decimal format.

If m is less than 10-4 or greater than or equal to 10precision, then it is represented in
computerized scientific notation.

The total number of significant digits in m is equal to the precision. If the
precision is not specified, then the default value is 6. If the precision is 0, then it
is taken to be 1.

If the '#' flag is given then an
FormatFlagsConversionMismatchException will be thrown.

'G' '\u0047' The upper-case variant of 'g'.

'f' '\u0066' Requires the output to be formatted using decimal format. The localization
algorithm is applied.

https://developer.android.com/reference/java/util/Formatter#L10nAlgorithm
https://developer.android.com/reference/java/util/Formatter#L10nAlgorithm
https://developer.android.com/reference/java/util/FormatFlagsConversionMismatchException
https://developer.android.com/reference/java/util/Formatter#bscientific
https://developer.android.com/reference/java/util/Formatter#bdecimal
https://developer.android.com/reference/java/util/Formatter#L10nAlgorithm
https://developer.android.com/reference/java/util/FormatFlagsConversionMismatchException
https://developer.android.com/reference/java/math/BigDecimal#toString()
https://developer.android.com/reference/java/math/BigDecimal#ROUND_HALF_UP
https://developer.android.com/reference/java/lang/Long#toString(long,%20int)

Version 03/01/2021 Formatter Page 24 of 28

The result is a string that represents the sign and magnitude (absolute value) of the
argument. The formatting of the sign is described in the localization algorithm.
The formatting of the magnitude m depends upon its value.

The magnitude is formatted as the integer part of m, with no leading zeroes,
followed by the decimal separator followed by one or more decimal digits
representing the fractional part of m.

The number of digits in the result for the fractional part of m or a is equal to the
precision. If the precision is not specified then the default value is 6. If the
precision is less than the number of digits to the right of the decimal point then the
value will be rounded using the round half up algorithm. Otherwise, zeros may be
appended to reach the precision. For a canonical representation of the value, use
BigDecimal.toString().

All flags defined for Byte, Short, Integer, and Long apply.

If the '#' flag is given, then the decimal separator will always be present.

The default behavior when no flags are given is the same as for Float and Double.

The specification of width and precision is the same as defined for Float and Double.

4.4 Date/Time
This conversion may be applied to long, Long, Calendar, Date and TemporalAccessor.

't' '\u0074' Prefix for date and time conversion characters.

'T' '\u0054' The upper-case variant of 't'.

The following date and time conversion character suffixes are defined for the 't' and 'T'

conversions. The types are similar to but not completely identical to those defined by GNU
date and POSIX strftime(3c). Additional conversion types are provided to access Java-

specific functionality (e.g. 'L' for milliseconds within the second).

The following conversion characters are used for formatting times:

'H' '\u0048' Hour of the day for the 24-hour clock, formatted as two digits with a leading zero
as necessary i.e. 00 - 23. 00 corresponds to midnight.

'I' '\u0049' Hour for the 12-hour clock, formatted as two digits with a leading zero as
necessary, i.e. 01 - 12. 01 corresponds to one o'clock (either morning or
afternoon).

'k' '\u006b' Hour of the day for the 24-hour clock, i.e. 0 - 23. 0 corresponds to midnight.

https://developer.android.com/reference/java/time/temporal/TemporalAccessor
https://developer.android.com/reference/java/util/Date
https://developer.android.com/reference/java/util/Calendar
https://developer.android.com/reference/java/lang/Long
https://developer.android.com/reference/java/util/Formatter#floatDPrec
https://developer.android.com/reference/java/util/Formatter#floatDWidth
https://developer.android.com/reference/java/util/Formatter#floatdFlags
https://developer.android.com/reference/java/util/Formatter#intFlags
https://developer.android.com/reference/java/math/BigDecimal#toString()
https://developer.android.com/reference/java/math/BigDecimal#ROUND_HALF_UP
https://developer.android.com/reference/java/util/Formatter#L10nAlgorithm

Version 03/01/2021 Formatter Page 25 of 28

'l' '\u006c' Hour for the 12-hour clock, i.e. 1 - 12. 1 corresponds to one o'clock (either
morning or afternoon).

'M' '\u004d' Minute within the hour formatted as two digits with a leading zero as necessary,
i.e. 00 - 59.

'S' '\u0053' Seconds within the minute, formatted as two digits with a leading zero as
necessary, i.e. 00 - 60 ("60" is a special value required to support leap
seconds).

'L' '\u004c' Millisecond within the second formatted as three digits with leading zeros as
necessary, i.e. 000 - 999.

'N' '\u004e' Nanosecond within the second, formatted as nine digits with leading zeros as
necessary, i.e. 000000000 - 999999999. The precision of this value is
limited by the resolution of the underlying operating system or hardware.

'p' '\u0070' Locale-specific morning or afternoon marker in lower case, e.g."am" or "pm".
Use of the conversion prefix 'T' forces this output to upper case. (Note that 'p'
produces lower-case output. This is different from GNU date and POSIX
strftime(3c) which produce upper-case output.)

'z' '\u007a' RFC 822 style numeric time zone offset from GMT, e.g. -0800. This value will
be adjusted as necessary for Daylight Saving Time. For long, Long, and Date
the time zone used is the default time zone for this instance of the Java virtual
machine.

'Z' '\u005a' A string representing the abbreviation for the time zone. This value will be
adjusted as necessary for Daylight Saving Time. For long, Long, and Date the
time zone used is the default time zone for this instance of the Java virtual
machine. The Formatter's locale will supersede the locale of the argument (if
any).

's' '\u0073' Seconds since the beginning of the epoch starting at 1 January 1970 00:00:00
UTC, i.e. Long.MIN_VALUE/1000 to Long.MAX_VALUE/1000.

'Q' '\u004f' Milliseconds since the beginning of the epoch starting at 1 January 1970
00:00:00 UTC, i.e. Long.MIN_VALUE to Long.MAX_VALUE. The
precision of this value is limited by the resolution of the underlying operating
system or hardware.

The following conversion characters are used for formatting dates:

'B' '\u0042' Locale-specific full month name, e.g. "January", "February".

'b' '\u0062' Locale-specific abbreviated month name, e.g. "Jan", "Feb".

'h' '\u0068' Same as 'b'.

'A' '\u0041' Locale-specific full name of the day of the week, e.g. "Sunday", "Monday".

https://developer.android.com/reference/java/text/DateFormatSymbols#getWeekdays()
https://developer.android.com/reference/java/text/DateFormatSymbols#getShortMonths()
https://developer.android.com/reference/java/text/DateFormatSymbols#getMonths()
https://developer.android.com/reference/java/util/TimeZone#getDefault()
https://developer.android.com/reference/java/util/Date
https://developer.android.com/reference/java/lang/Long
https://developer.android.com/reference/java/util/TimeZone#getDefault()
https://developer.android.com/reference/java/util/Date
https://developer.android.com/reference/java/lang/Long
http://www.ietf.org/rfc/rfc0822.txt
https://developer.android.com/reference/java/text/DateFormatSymbols#getAmPmStrings()

Version 03/01/2021 Formatter Page 26 of 28

'a' '\u0061' Locale-specific short name of the day of the week, e.g. "Sun", "Mon".

'C' '\u0043' Four-digit year divided by 100, formatted as two digits with leading zero as
necessary, i.e. 00 - 99.

'Y' '\u0059' Year, formatted to at least four digits with leading zeros as necessary, e.g. 0092
equals 92 CE for the Gregorian calendar.

'y' '\u0079' Last two digits of the year, formatted with leading zeros as necessary, i.e. 00 -
99.

'j' '\u006a' Day of year, formatted as three digits with leading zeros as necessary, e.g. 001 -
366 for the Gregorian calendar. 001 corresponds to the first day of the year.

'm' '\u006d' Month, formatted as two digits with leading zeros as necessary, i.e. 01 - 13,
where "01" is the first month of the year and ("13" is a special value required to
support lunar calendars).

'd' '\u0064' Day of month, formatted as two digits with leading zeros as necessary, i.e. 01 -
31, where "01" is the first day of the month.

'e' '\u0065' Day of month, formatted as two digits, i.e. 1 - 31 where "1" is the first day of
the month.

The following conversion characters are used for formatting common date/time compositions.

'R' '\u0052' Time formatted for the 24-hour clock as "%tH:%tM".

'T' '\u0054' Time formatted for the 24-hour clock as "%tH:%tM:%tS".

'r' '\u0072' Time formatted for the 12-hour clock as "%tI:%tM:%tS %Tp". The location
of the morning or afternoon marker ('%Tp') may be locale-dependent.

'D' '\u0044' Date formatted as "%tm/%td/%ty".

'F' '\u0046' ISO 8601 complete date formatted as "%tY-%tm-%td".

'c' '\u0063' Date and time formatted as "%ta %tb %td %tT %tZ %tY", e.g. "Sun Jul
20 16:17:00 EDT 1969".

The '-' flag defined for General conversions applies. If the '#' flag is given, then a

FormatFlagsConversionMismatchException will be thrown.

The width is the minimum number of characters to be written to the output. If the length of the
converted value is less than the width then the output will be padded by spaces ('\u0020')

until the total number of characters equals width. The padding is on the left by default. If the
'-' flag is given then the padding will be on the right. If width is not specified then there is no

minimum.

https://developer.android.com/reference/java/util/FormatFlagsConversionMismatchException
https://developer.android.com/reference/java/util/Formatter#dFlags
http://www.w3.org/TR/NOTE-datetime
https://developer.android.com/reference/java/text/DateFormatSymbols#getShortWeekdays()

Version 03/01/2021 Formatter Page 27 of 28

The precision is not applicable. If the precision is specified then an
IllegalFormatPrecisionException will be thrown.

4.5 Percent
The conversion does not correspond to any argument.

'%' The result is a literal '%' ('\u0025').

The width is the minimum number of characters to be written to the output including the '%'.
If the length of the converted value is less than the width then the output will be padded by
spaces ('\u0020') until the total number of characters equals width. The padding is on the
left. If width is not specified then just the '%' is output.

The '-' flag defined for General conversions applies. If any other flags are provided, then a
FormatFlagsConversionMismatchException will be thrown.

The precision is not applicable. If the precision is specified an
IllegalFormatPrecisionException will be thrown.

4.6 Line Separator
The conversion does not correspond to any argument.

'n' The platform-specific line separator as returned by
System.getProperty("line.separator").

Flags, width, and precision are not applicable. If any are provided an
IllegalFormatFlagsException, IllegalFormatWidthException, and

IllegalFormatPrecisionException, respectively will be thrown.

4.7 Argument Index
Format specifiers can reference arguments in three ways:

• Explicit indexing is used when the format specifier contains an argument index. The
argument index is a decimal integer indicating the position of the argument in the argument
list. The first argument is referenced by "1$", the second by "2$", etc. An argument may

be referenced more than once.

For example:

formatter.format("%4$s %3$s %2$s %1$s %4$s %3$s %2$s %1$s",
 "a", "b", "c", "d")

https://developer.android.com/reference/java/util/IllegalFormatPrecisionException
https://developer.android.com/reference/java/util/IllegalFormatWidthException
https://developer.android.com/reference/java/util/IllegalFormatFlagsException
https://developer.android.com/reference/java/lang/System#getProperty(java.lang.String)
https://developer.android.com/reference/java/util/IllegalFormatPrecisionException
https://developer.android.com/reference/java/util/FormatFlagsConversionMismatchException
https://developer.android.com/reference/java/util/Formatter#dFlags
https://developer.android.com/reference/java/util/IllegalFormatPrecisionException

Version 03/01/2021 Formatter Page 28 of 28

// -> "d c b a d c b a"

• Relative indexing is used when the format specifier contains a '<' ('\u003c') flag which

causes the argument for the previous format specifier to be re-used. If there is no previous
argument, then a MissingFormatArgumentException is thrown.

formatter.format("%s %s %<s %<s", "a", "b", "c", "d")
// -> "a b b b"
// "c" and "d" are ignored because they are not referenced

• Ordinary indexing is used when the format specifier contains neither an argument index
nor a '<' flag. Each format specifier which uses ordinary indexing is assigned a

sequential implicit index into argument list which is independent of the indices used by
explicit or relative indexing.

formatter.format("%s %s %s %s", "a", "b", "c", "d")
// -> "a b c d"

It is possible to have a format string which uses all forms of indexing, for example:

formatter.format("%2$s %s %<s %s", "a", "b", "c", "d")
// -> "b a a b"
// "c" and "d" are ignored because they are not referenced

The maximum number of arguments is limited by the maximum dimension of a Java array as
defined by The Java™ Virtual Machine Specification. If the argument index is does not
correspond to an available argument, then a MissingFormatArgumentException is

thrown.

If there are more arguments than format specifiers, the extra arguments are ignored.

Unless otherwise specified, passing a null argument to any method or constructor in this

class will cause a NullPointerException to be thrown.

https://developer.android.com/reference/java/lang/NullPointerException
https://developer.android.com/reference/java/util/MissingFormatArgumentException
https://developer.android.com/reference/java/util/MissingFormatArgumentException

	1 Formatter
	2 Format String Syntax
	3 Conversions
	3.1 Date/Time Conversions
	3.2 Flags
	3.3 Width
	3.4 Precision
	3.5 Argument Index

	4 Details
	4.1 General
	4.2 Character
	4.3 Numeric
	4.4 Date/Time
	4.5 Percent
	4.6 Line Separator
	4.7 Argument Index

